Description

The AEM30940 evaluation board is a printed circuit board (PCB) featuring all the needed components to operate the AEM30940 integrated circuit (IC). Please refer to the datasheet for all the useful details about the AEM30940 (Document DS_AEM30940).

The AEM30940 evaluation board allows users to test the e-peas IC and analyze its performances in a laboratory-like setting.

It allows easy connections to the RF energy harvester, the storage element, the low-voltage and the high-voltage loads. This evaluation board includes two matching networks and rectifiers for a 50 Ω single-ended antenna. It also provides all the configuration access to set the device in any one of the modes described in the datasheet. The MPPT ratio is fixed at 50% to optimize the rectifier efficiency. The control and status signals are available on standard pinheaders, allowing users to wire for any usage scenario and evaluate the relevant performance.

The AEM30940 evaluation board is a plug and play, intuitive and efficient tool for making the appropriate decisions (component selection, operating modes…) for the design of a highly efficient subsystem powered by radio frequency energy harvesting in your target application.

There are three designs of the AEM30940 evaluation board for RF harvesting. One is for the 868MHz band, one is for the 915MHz and another for the 2.4GHz band.

Appearance

Features

Two-way screw terminals
- Low-voltage load.
- High-voltage load.
- Primary energy storage element.
- Resistor for ZMPP configuration.

Three-way screw terminals
- Energy storage element (Battery or (super)capacitor).

2-pin “Shrouded Header”
- Alternative connection for the storage element.

3-pin headers
- Maximum power point tracker (MPPT) configuration.
- Low drop-out regulators (LDOs) enabling.
- Energy storage elements and LDOs configuration.
- Dual-cell supercapacitor configuration.

2-pin headers
- Primary battery configuration.

Provision for resistors
- Custom mode configuration.
- Primary battery configuration.
- ZMPP configuration.

1-pin headers
- Access to status pins.

EvB Information

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2AAEM30940C041 REV:3</td>
<td>76 mm x 49 mm</td>
</tr>
</tbody>
</table>

Device Information

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>10AEM30940C0000</td>
<td>5 mm x 5 mm</td>
</tr>
</tbody>
</table>
1. Connections Diagram

NOTE: if R1, R2, R3, R4 and R9 are not mounted (and thus SET_OVDIS, SET_OVCH and SET_CHRDY are floating), make sure that no power source is connected to SRC or to PRIM when CFG[2:0] is LLL (custom mode) or floating. This would lead to damaging the AEM30940. Having SET_OVDIS, SET_OVCH and SET_CHRDY tied to BUCK by installing 0 Ω on R2, R3 and R9 prevents this behavior.

Figure 1: Connection Diagram

Warning: Please refer to Section 7 - Safety Information before connecting the board. A 150μF capacitor CBATT is already soldered on BAT. MPP configuration: Mandatory connection. See Table "Usage of SELMPP[1:0]". RF source: Select the high or low power RF matching network and rectifier. Rectifier High and Low Power Matching Circuit leave floating if not used. Battery & LDOs configuration: Mandatory connection. See Table "LDOs enabling". Primary battery: Mandatory connection. Connect a jumper to "NoPRIM" 2-pin or connect the battery. See Section "Primary Battery Configuration". LDOs enabling: Mandatory connection. See Table "Usage of CFG[2:0]". High voltage LDO output: Leave floating if not used. Low voltage LDO output: Leave floating if not used.
1.1. Signals Description

<table>
<thead>
<tr>
<th>NAME</th>
<th>Description</th>
<th>If used</th>
<th>If not used</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power signals</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SRC</td>
<td>Connection to the harvested energy source. Connect the source element.</td>
<td>If not used</td>
<td></td>
</tr>
<tr>
<td>BATT</td>
<td>Connection to the energy storage element. Connect the storage element</td>
<td>If not used</td>
<td>Do not remove CBATT.</td>
</tr>
<tr>
<td>BAL</td>
<td>Connection to mid-point of a dual-cell supercapacitor. Connect mid-point of supercapacitor and a jumper from "BAL" to "ToCN". Use a jumper to connect "BAL" to "GND".</td>
<td>If not used</td>
<td></td>
</tr>
<tr>
<td>PRIM</td>
<td>Connection to the primary battery. Connect primary battery and remove the "NoPRIM" jumpers. Connect a jumper to each "NoPRIM" 2-pin.</td>
<td>If not used</td>
<td></td>
</tr>
<tr>
<td>LVOUT</td>
<td>Output of the low-voltage LDO regulator. Connect a load. Leave floating</td>
<td>If used</td>
<td></td>
</tr>
<tr>
<td>HVOUT</td>
<td>Output of the high-voltage LDO regulator. Connect a load. Leave floating</td>
<td>If used</td>
<td></td>
</tr>
<tr>
<td>Debug signals</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VBOOST</td>
<td>Output of the boost converter.</td>
<td>If used</td>
<td></td>
</tr>
<tr>
<td>VBUCK</td>
<td>Output of the buck converter.</td>
<td>If used</td>
<td></td>
</tr>
<tr>
<td>BUFSC</td>
<td>Connection to an external capacitor buffering the boost converter input.</td>
<td>If used</td>
<td></td>
</tr>
<tr>
<td>Configuration signals</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CFG[2:0]</td>
<td>Configuration of the threshold voltages for the energy storage element.</td>
<td>Connect jumpers (see Table 2).</td>
<td>Cannot be left floating (see Table 2).</td>
</tr>
<tr>
<td>SELMPP[1:0]</td>
<td>Configuration of the MPP ratio. Connect jumpers (see Table 4).</td>
<td>Connect jumpers (see Table 4).</td>
<td>Cannot be left floating (see Table 4).</td>
</tr>
<tr>
<td>FB_PRIM_D</td>
<td>Configuration of the primary battery. Use resistors R7-R8 (see Section 2.3.3).</td>
<td>Connect a jumper to each "NoPRIM" 2-pin.</td>
<td></td>
</tr>
<tr>
<td>FB_PRIM_U</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FB_HV</td>
<td>Configuration of the high-voltage LDO in the custom mode.</td>
<td>Use resistor R5-R6 (see Section 2.3.1).</td>
<td>Leave floating.</td>
</tr>
<tr>
<td>Control signals</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENHV</td>
<td>Enabling pin for the high-voltage LDO. Connect jumper (see Table 3).</td>
<td>Connect jumper (see Table 3).</td>
<td>Cannot be left floating (see Table 3).</td>
</tr>
<tr>
<td>ENLV</td>
<td>Enabling pin for the low-voltage LDO. Connect jumper (see Table 3).</td>
<td>Connect jumper (see Table 3).</td>
<td>Cannot be left floating (see Table 3).</td>
</tr>
<tr>
<td>Status signals</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STATUS[2]</td>
<td>Logic output. Asserted when the AEM performs a MPP evaluation.</td>
<td>If used</td>
<td></td>
</tr>
<tr>
<td>STATUS[1]</td>
<td>Logic output. Asserted if the battery voltage falls under Vovdis or if the AEM is taking energy from the primary battery.</td>
<td>If used</td>
<td></td>
</tr>
<tr>
<td>STATUS[0]</td>
<td>Logic output. Asserted when the LDOs can be enabled.</td>
<td>If used</td>
<td></td>
</tr>
</tbody>
</table>

Table 1: Pin Description

\(a.CBATT\) capacity on the EvK may vary depending on suppliers availability, with a minimum value of 150\(\mu\)F.
2. General Considerations

2.1. Safety Information

Always connect the elements in the following order:
1. Reset the board - see “How to reset the AEM30940 evaluation board” on Figure 2.
2. Completely configure the PCB (jumpers/resistors):
 - MPP configuration (SELMPP[1:0], RZMPP) - see Table 4.
 - Battery and LDOs configuration (CFG[2:0] and, if needed, R1 to R6) - see Table 2.
 - Primary battery configuration (“NoPRIM” or R7-R8) - see Section 2.3.3.
 - LDOs enabling (ENHV and ENLV) - see Table 3.
 - Balancing circuit connection (BAL) - see Section 2.3.4.
3. Connect the storage elements on BATT and optionally the primary battery on PRIM.
4. Connect the high and/or low voltage loads on HVOUT/LVOUT (optional).
5. Connect the source.
To avoid damage to the board, users are urged to follow this procedure.

How to reset the AEM30940 evaluation board:
To reset the board, simply disconnect the storage element and the optional primary battery and press the reset button in order to discharge the internal nodes of the system.

2.2. Basic Configurations

<table>
<thead>
<tr>
<th>Configuration pins</th>
<th>Storage element threshold voltages</th>
<th>LDOs output voltages</th>
<th>Typical use</th>
</tr>
</thead>
<tbody>
<tr>
<td>H H H</td>
<td>4.12 V 3.67 V 3.60 V 3.3 V 1.8 V</td>
<td>Li-ion battery</td>
<td></td>
</tr>
<tr>
<td>H H L</td>
<td>4.12 V 4.04 V 3.60 V 3.3 V 1.8 V</td>
<td>Solid state battery</td>
<td></td>
</tr>
<tr>
<td>H L H</td>
<td>4.12 V 3.67 V 3.01 V 2.5 V 1.8 V</td>
<td>Li-ion/NiMH battery</td>
<td></td>
</tr>
<tr>
<td>H L L</td>
<td>2.70 V 2.30 V 2.20 V 1.8 V 1.2 V</td>
<td>Single-cell (super)</td>
<td>capaci tor</td>
</tr>
<tr>
<td>L H H</td>
<td>4.50 V 3.67 V 2.80 V 2.5 V 1.8 V</td>
<td>Dual-cell supercapacitor</td>
<td></td>
</tr>
<tr>
<td>L H L</td>
<td>4.50 V 3.92 V 3.60 V 3.3 V 1.8 V</td>
<td>Dual-cell supercapacitor</td>
<td></td>
</tr>
<tr>
<td>L L H</td>
<td>3.63 V 3.10 V 2.80 V 2.5 V 1.8 V</td>
<td>LiFePO4 battery</td>
<td></td>
</tr>
<tr>
<td>L L L</td>
<td>Custom mode - see Section 2.3.1.</td>
<td>1.8 V</td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Usage of CFG[2:0]
2.3. Advanced Configurations

A complete description of the system constraints and configurations is available in the AEM30940 datasheet “System configuration” Section.

A reminder on how to calculate the configuration resistors value is provided below. Calculation can be made with the help of the spreadsheet found on e-peas website.

2.3.1. Custom Mode

In addition to the pre-defined storage element protection levels, the custom mode allows users to define their own levels via resistors R1 to R4 and to tune the output of the high voltage LDO HVOUT via resistors R5-R6.

Here is how to determine the values of R1-R4 to set the desired storage element protection levels:

- \(R_T = R_1 + R_2 + R_3 + R_4 \)
- \(1M\Omega \leq R_T \leq 100M\Omega \)
- \(R_1 = R_T \cdot \frac{1V}{V_{OVCH}} \)
- \(R_2 = R_1 \cdot \left(\frac{1V}{V_{CHRDY}} - \frac{1V}{V_{OVCH}}\right) \)
- \(R_3 = R_1 \cdot \left(\frac{1V}{V_{OVDIS}} - \frac{1V}{V_{CHRDY}}\right) \)
- \(R_4 = R_1 \cdot \left(\frac{1V}{V_{OVDIS}} - \frac{1V}{V_{CHRDY}}\right) \)

Here is how to determine the values of R5-R6 to set the desired HVOUT voltages:

- \(R_V = R_5 + R_6 \)
- \(1M\Omega \leq R_V \leq 40M\Omega \)
- \(R_5 = R_V \cdot \frac{1V}{V_{DV}} \)
- \(R_6 = R_V \cdot \left(1 - \frac{1V}{V_{HV}}\right) \)

Make sure the protection levels satisfy the following conditions:

- \(V_{CHRDY} + 0.05V \leq V_{OVCH} \leq 4.5V \)
- \(V_{OVDIS} + 0.05V \leq V_{CHRDY} \leq V_{OVCH} - 0.5V \)
- \(2.2V \leq V_{OVDIS} \)

If custom mode used:
- Remove R2, R3 and R9 zero ohm resistors.
- Set resistors R1 to R6 to configure the custom mode.

If custom mode unused:
- Leave the resistor footprints of R1 to R6 empty.
- Place 0 ohm resistors on R9.
- Do not set CFG[2:0] to LLL.

2.3.2. ZMPP Configuration

If this configuration is chosen (see Table 4), the AEM30940 regulates \(V_{SRC} \) at a voltage equals to the product of \(R_{ZMPP} \) times the current available at the source.

If unused, leave the resistor footprint \(R_{ZMPP} \) empty.

2.3.3. Primary Battery Configuration

If a primary storage is used, it is mandatory to determine \(V_{PRIM_MIN} \), the voltage at which the primary battery is considered fully depleted. To do so, use resistors R7 - R8.

These resistors are calculated as follows:

- \(R_p = R_7 + R_8 \)
- \(100k\Omega \leq R_p \leq 500k\Omega \)
- \(R_7 = \frac{V_{PRIM_MIN}}{4} \cdot \frac{1}{R_p \cdot 2.2V} \)
- \(R_8 = R_p - R_7 \)

If unused, use a jumper to short each “NoPRIM” 2-pin headers.

2.3.4. Balancing Circuit Configuration

When using a dual-cell supercapacitor (that does not already include a balancing circuit), enable the balancing circuit configuration to ensure equal voltage on both cells. To do so:

- Connect the node between the two supercapacitor cells to BAL (on BATT connector).
- Use a jumper to connect “BAL” to “ToCN”.

If unused, use a jumper to connect “BAL” to “GND”.

<table>
<thead>
<tr>
<th>ENLV</th>
<th>ENHV</th>
<th>LV output</th>
<th>HV output</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>H</td>
<td>Enabled</td>
<td>Enabled</td>
</tr>
<tr>
<td>H</td>
<td>L</td>
<td>Enabled</td>
<td>Disabled</td>
</tr>
<tr>
<td>L</td>
<td>H</td>
<td>Disabled</td>
<td>Enabled</td>
</tr>
<tr>
<td>L</td>
<td>L</td>
<td>Disabled</td>
<td>Disabled</td>
</tr>
</tbody>
</table>

Table 3: LDOs enabling

<table>
<thead>
<tr>
<th>SELMPP[1]</th>
<th>SELMPP[0]</th>
<th>Vmpp/Voc</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>L</td>
<td>50%</td>
</tr>
<tr>
<td>L</td>
<td>H</td>
<td>65%</td>
</tr>
<tr>
<td>H</td>
<td>L</td>
<td>80%</td>
</tr>
<tr>
<td>H</td>
<td>H</td>
<td>ZMPP</td>
</tr>
</tbody>
</table>

Table 4: Usage of SELMPP[1:0]
3. Functional Tests

This section presents a few simple tests that allow the user to understand the functional behavior of the AEM30940. To avoid damaging the board, follow the procedure found in Section 2.1 “Safety Information”. If a test has to be restarted make sure to properly reset the system to obtain reproducible results.

Those functional tests were made using the following setup:

- Configurations:
 - SELMP[1:0] = LL
 - CFG[2:0] = HLL, ENHV = H, ENLV = H.
- Storage element: Capacitor (4.7 mF + CBATT).
- Loads: 10 kΩ on HVOUT, LVOUT left floating.
- SRC: current source (1 mA or 100 µA) with voltage compliance (4V) applied on the middle pin of the source element selection header named SRC_choice.

Feel free to adapt the setup to match your system as long as the input and cold-start constraints are respected (see the AEM30940 datasheet “Introduction” Section).

3.1. Start-up

The following example allows users to observe the behavior of the AEM30940 in the wake-up mode.

Setup
- Place the probes on the nodes to be observed.
- Referring to Figure 1, follow steps 1 to 5 explained in Section 2.1 “Safety Information”.

Observations and Measurements
- **BATT**: Voltage rises as the power provided by the source is transferred to the storage element (see Figure 3).
- **SRC**: Regulated at \(V_{MPP} \), which is a voltage equal to the open-circuit voltage \(V_{OC} \) times the MPP ratio defined in Table 4. \(V_{SRC} \) equals \(V_{DC} \) during MPP evaluation (see Figure 4. Note that \(V_{src} \) must be higher than 380 mV to coldstart.
- **HVOUT/LVOUT**: Regulated when voltage on BATT first rises above \(V_{CHRDY} \) (see Figure 3).
- **STATUS[0]**: Asserted when the LDOs are ready to be enabled (refer to the AEM30940 datasheet “Normal Mode” section) (see Figure 3).
- **STATUS[2]**: Asserted each time the AEM30940 performs a MPP evaluation (See Figure 4).

3.2. Shutdown

This test allows users to observe the behavior of the AEM30940 when the system is running out of energy.

Setup
- Place the probes on the nodes to be observed.
- Referring to Figure 1, follow steps 1 to 5 explained in Section 2.1 “Safety Information”. Configure the board in the desired state and start the system (see Section 3.1). Do not use a primary battery.
- Let the system reach a steady state (i.e. voltage on BATT between \(V_{OVCH} \) and \(V_{CHRDY} \) and STATUS[0] asserted).
- Remove the PV cell and let the system discharge through quiescent current and HVOUT/LVOUT load(s).

Observations and Measurements
- **BATT**: Voltage decreases as the system consumes the power accumulated in the storage element. The voltage remains stable after crossing \(V_{OVCH} \) (see Figure 5).
- **STATUS[0]**: De-asserted when the LDOs are no longer available as the storage element is running out of energy. This happens 600 ms after STATUS[1] assertion (see Figure 5).

- **STATUS[1]**: Asserted for 600 ms when the storage element voltage (BATT) falls below V_{OVDIS} (see Figure 5).

Figure 5: LDOs disabled around 600 ms after BATT reaches V_{OVDIS}

3.3. Switching on Primary Battery

This example allows users to observe switching from the main storage element to the primary battery when the system is running out of energy.

Setup

- Place the probes on the nodes to be observed.
- Referring to Figure 1, follow steps 1 to 5 explained in Section 2.1 “Safety Information”. Configure the board in the desired state and start the system (see Section 3.1). Connect a primary battery (example: 3.1 V coin cell with protection level at 2.4 V, $R_7 = 68 \, \text{k}\Omega$ and $R_8 = 180 \, \text{k}\Omega$).
- Let the system reach a steady state (i.e., voltage on BATT between V_{CHRDY} and V_{OVDIS} and STATUS[0] asserted).
- Remove the PV cell and let the system discharge through quiescent current and HVOUT/LVOUT load(s).

Observations and Measurements

- **BATT**: Voltage decreases as the system consumes the power accumulated in the storage element. The voltage reaches V_{OVDIS} and than rises again to V_{CHRDY} as it is recharged from the primary battery (see Figure 6).
- **STATUS[0]**: Never de-asserted as the LDOs are still functional (see Figure 6).
- **HVOUT**: Stable and not affected by switching on the primary battery (see Figure 6).

Figure 6: Switching from SRC to the primary battery

3.4. Cold Start

The following test allows the user to observe the minimum voltage required to coldstart the AEM30940. To prevent leakage current induced by the probe, the user should avoid probing any unnecessary node. Make sure to properly reset the board to observe the cold-start behavior.

Setup

- Place the probes on the nodes to be observed.
- Referring Figure 1, follow steps 1 and 2 explained in Section 2.1. Configure the board in the desired state. Do not plug any storage element in addition to CBATT.
- **SRC**: Connect your source element on the middle point of the source element selection header.

Observations and Measurements

- **SRC**: Equal to the cold-start voltage during the cold-start phase. Regulated at the selected MPPT percentage of V_{OC} when cold start is over. (See Figure 7). Be careful that the cold-start phase time will shorten with the input power. Limit it to ease the observation.
- **BATT**: Starts to charge when the cold-start phase is over (see Figure 7).
3.5. Dual-cell Supercapacitor Balancing Circuit

The following test allows the user to observe the balancing circuit behavior that balances the voltage on both side of the BAL pin.

Setup

- Following steps 1 and 2 explained in Section 2.1 and referring to Figure 1, configure the board in the desired state. Plug the jumper linking “BAL” to “ToCN”.
- **BATT**: Plug a capacitor C1 between the positive (+) pin and the BAL pin, and a capacitor C2 between the BAL pin and the negative (-) pin.
 - C1 & C2 > 1 mF.
 - \((C2 \times V_{CHRDY}) / C1 \geq 0.9 \text{ V}\).
- SMA connector: Plug your source element to power up the system.

Observations and Measurements

- BAL voltage equals half of the BATT voltage.
4. Performance Tests

This section presents the tests to reproduce the performance graphs found in the AEM30940 datasheet and to understand the functionalities of the AEM30940. To be able to reproduce those tests, the following equipment is required:

- 1 voltage source.
- 2 source measure units (SMUs).
- 1 oscilloscope.

To avoid damaging the board, follow the procedure in Section 2.1 “Safety Information”. If a test has to be restarted, make sure to properly reset the system to obtain reproducible results (see “How to reset the AEM30940 evaluation board” in Section 2.1).

4.1. LDOs

The following example instructs users on how to measure the output voltage stability of the LDOs (Low-voltage and High-voltage LDO regulation Sections of the AEM30940 datasheet).

Setup
- Referring to Figure 1, follow steps 1 and 2 explained in the Section 2.1. Configure the board in the desired state and connect your storage element(s).
- VBOOST: Connect SMU1. Configure it to Voltage Source with a Current Compliance of 200 mA.
- HVOUT / LVOUT: Connect SMU2 to the LDO you want to measure. Configure it to sink current with a Voltage Compliance of 5 V for HVOUT or 2.5 V for LVOUT.

Manipulations
- Impose a voltage between VOVCH and 5 V on SMU1 to force the AEM to start.
- Sweep voltage on SMU1 from VOVDIS + 50 mV to 4.5 V.
- Repeat with different current levels on SMU2 (from 10 µA to 80 mA for HVOUT and from 10 µA to 20 mA for LVOUT). Please make sure to set negative current values on SMU2 to simulate the load.

Measurements
- HVOUT/LVOUT: Measure the voltage.

Warning regarding measurements:
Any item connected to the PCB (load, probe, storage device, etc.) involves a leakage current. This can negatively impact the measurements. Whenever possible, disconnect unused items to limit this effect.

4.2. BOOST Efficiency

This test allows users to reproduce the efficiency graphs of the AEM30940 boost converter (Boost Conversion Efficiency Sections of the AEM30940 datasheet).

Setup
- Following steps 1 and 2 explained in the Section 2.1 and referring to Figure 1, configure the board in the desired state.
- VBUCK: Connect a 2.3 V Voltage Source to prevent VBUCK to sink current from VBOOST.
- SRC (middle point of the source element selection header): Connect SMU1. Configure it to Current Source with a Voltage Compliance of 0 V.
- VBOOST: Connect SMU2 and configure it to Voltage Source with a Current Compliance of 200 mV.
- STATUS[2]: Connect to one of the SMU to detect falling edge.
Manipulations

- Impose a voltage between V_{OVCH} and 5 V on SMU2 to force the AEM to start. When done, impose a voltage between $V_{OVDIS} + 50$ mV and V_{OVCH}.
- Sweep voltage compliance on SMU1 from $V_{OVDIS} + 50$ mV to 4.5 V.
- Repeat with different current levels on SMU1 (from 100 µA to 100 mA) and with different voltage levels on SMU2 (from $V_{OVDIS} + 50$ mV to V_{OVCH}).

Measurements

- **STATUS[2]:** Do not make any measurements while high (boost converter is not active during MPP calculation).
- **SRC:** Measure the current and the voltage.
- **VBOOST:** Measure the current and the voltage. Repeat the measurement a copious number of times to be sure to capture the current peaks. Figure 10 has been obtained by averaging over 100 measurements configured with a 100 ms integration time.
- Deduce input and output power ($P = U \times I$) and efficiency ($\eta = \frac{P_{out}}{P_{in}}$).

![Figure 10: Boost efficiency for ISRC = 1mA](image)

4.3. Custom Mode Configuration

This test allows users to measure the custom protection levels of the storage element set by resistors R1 to R6.

Setup

- Referring to Section 1, follow steps 1 and 2 explained in Section 2.1.
- To select custom mode:
 - Set CFG[2:0] = LLL.
 - Remove R2, R3 and R9.
 - Choose R1 to R6 to configure the battery protection levels and HVOUT output voltage.
- Place the probes on the nodes to be observed.
- **SRC:** connect your source element to power up the system.

Manipulations

- Remove the source element after the voltage on BATT has reached steady state (between V_{CHRDY} and V_{OVCH}).

Measurements

Measure the following nodes to ensure the correct behavior of the AEM30940 with respect to the custom configuration:

- **STATUS[0]:** Asserted when the LDOs can be enabled (i.e. when BATT first rises above V_{CHRDY}).
- **STATUS[1]:** Asserted when BATT falls below V_{OVDIS}.
- **BATT:** Rise up and oscillate around V_{OVCH} as long as the source element has not been removed.
- **HVOUT:** Equal to the value set by R5-R6.
5. Schematic

Figure 11: AEM30940 2450 MHz Evaluation Board Schematic
6. Revision History

<table>
<thead>
<tr>
<th>EVK Version</th>
<th>User Guide Revision</th>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>2.0</td>
<td>September, 2019</td>
<td>Creation of the document</td>
</tr>
<tr>
<td>868: 1.2</td>
<td>2.1</td>
<td>August, 2023</td>
<td>- Aesthetic modifications</td>
</tr>
<tr>
<td>915: 1.3</td>
<td></td>
<td></td>
<td>- Information and figure added for the 2450 MHz EvK</td>
</tr>
<tr>
<td>2.45: 1.3</td>
<td></td>
<td></td>
<td>- Functional Tests and Performance Tests sections added</td>
</tr>
<tr>
<td>1.3</td>
<td>1.0</td>
<td>October, 2023</td>
<td>Separate UG for each RF EvK of the AEM30940</td>
</tr>
</tbody>
</table>

Table 5: Revision History