FEATURES

Connectors
• 1 screw connector for the source + 2 screw connectors for AC input signal
• 1 screw connector + 1 JST connector for the storage element
• 1 screw connector for the application supply

Configuration
• 6 jumpers SRC_LVL_CFG[x] to define the source voltage regulation
• 4 jumpers STO_CFG[x] to define the storage element protection levels
• 4 resistors footprint related to the custom mode (STO_CFG[3:0]=LHHH)
• 1 jumper to set the dual-cell supercapacitor BAL feature
• 2 jumpers to enable the different modes
• 2 jumpers to enable the application output supply
• 1 jumper to select the rectifier

Size
• 79mm x 49mm
• 4 x M2.5 Mounting holes

SUPPORT PCB

BOM around the AEM00300

<table>
<thead>
<tr>
<th>Designator</th>
<th>Description</th>
<th>Quantity</th>
<th>Manufacturer</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>UI</td>
<td>AEM00300 - Symbol QFN 28-pin</td>
<td>1</td>
<td>e-peas</td>
<td>order at sales@e-peas.com</td>
</tr>
<tr>
<td>LDCDC</td>
<td>Power Inductor 10µf - 1.76A</td>
<td>1</td>
<td>Murata</td>
<td>DEE250010-300M</td>
</tr>
<tr>
<td>CPF</td>
<td>Ceramic Cap 10µf, 6.3V, 20%, XSR 0402</td>
<td>1</td>
<td>Murata</td>
<td>GRM15SR010163ME15</td>
</tr>
<tr>
<td>CSRC</td>
<td>Ceramic Cap 35µf, 6.3V, 20%, XSR 0402</td>
<td>1</td>
<td>Murata</td>
<td>GRM15SR010163MB05</td>
</tr>
<tr>
<td>CSTO [optional]</td>
<td>Ceramic Cap 100µf, 6.3V, 20%, XSR 1206</td>
<td>1</td>
<td>TDK</td>
<td>C32160SA1A207R5060AC</td>
</tr>
</tbody>
</table>

Footprint & Symbol: Information available in the datasheet
STEP 1: AEM00300 Configuration

- **BAL option:** Select “ToCn” for dual-cells supercapacitor and “GND” for any other storage element

- **Configuration mode:** EN_HP – EN_STO_CH
 Connect to H for enabling the feature, connect to L for disabling the feature

- **External output supply:** Connect both jumper at the APP_EN_AEM and STO_APP headers to enable the APP output supply.
STEP 2: Connect the storage element

STEP 3: Connect the harvester

- **Internal Boost efficiency Vs. input voltage in Low Power mode:**

 ![Graph](image1.png)

- **Internal Boost efficiency Vs. input voltage in High Power mode:**

 ![Graph](image2.png)

STEP 4: Check the status

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Logic Level</th>
<th>Low</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST_STA</td>
<td>Logic output levels on the status STO pin</td>
<td>GND</td>
<td>V_STA</td>
</tr>
</tbody>
</table>