Highly Efficient, Regulated Dual-Output, Ambient Energy Manager for TEG with Optional Primary Battery

Features

Ultra-low power start-up
- Cold start from 60 mV input voltage and 150 µW input power (typical) with optional external module.
- Cold start from 380 mV input voltage and 100 µW input power (typical) without optional external module.

Ultra-low power boost regulator
- Open-circuit voltage sensing for MPPT every 21 s.
- Configurable MPPT with 2-pin programming.
- Selectable Voc ratios of 50%, 55% or 75%.
- Harvesting input voltage range from 50 mV to 3.5 V.
- MPPT voltage operation range from 50 mV to 3.5 V.
- Constant impedance matching (ZMPPT).

Integrated 1.2 V/1.8 V LDO regulator
- Up to 20 mA load current.
- Dynamically power-gated by external control.
- Selectable output voltage.

Integrated 1.8 V - 4.1 V LDO regulator
- Up to 80 mA load current with 300 mV drop-out.
- Dynamically power-gated by external control.
- Selectable or adjustable output voltage.

Flexible energy storage management
- Selectable or adjustable overcharge and over-discharge protection for any type of rechargeable battery or (super)capacitor.
- Fast supercapacitor charging.
- Indication when battery is running low.
- Indication when output voltage regulators are available.

Optional primary battery
- Automatic switching to primary battery when the secondary battery is exhausted.

Integrated storage element balancing circuit for dual-cell supercapacitor

Applications

<table>
<thead>
<tr>
<th>Thermal harvesting</th>
<th>Smart agriculture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Industrial monitoring</td>
<td>E-health monitoring</td>
</tr>
<tr>
<td>Geolocation</td>
<td>Wireless sensor nodes</td>
</tr>
</tbody>
</table>

Description

The AEM20940 is an integrated energy management circuit that extracts DC power from a TEG to simultaneously store energy in a rechargeable element and supply the system with two independent regulated voltages. The AEM20940 allows to extend battery lifetime and ultimately eliminate the primary energy storage element in a large range of wireless applications such as industrial monitoring, home automation and smart agriculture.

The AEM20940 harvests the available input current up to 110 mA while regulating the source to a voltage configured by the user. It integrates an ultra-low power boost converter to charge a storage element, such as a Li-ion battery, a thin film battery, a supercapacitor or a conventional capacitor. The boost converter operates with input voltages ranging from 50 mV to 3.5 V.

With its unique cold-start circuit, it can start operating with empty storage elements at an input voltage as low as 380 mV and an input power of only 100 µW. Thanks to an external optional module, the cold start input voltage lowers to 60 mV with an input power of just 150 µW.

The low-voltage supply typically drives a microcontroller at 1.2 V or 1.8 V. The high-voltage supply typically drives a radio transceiver at 1.8 V, 2.5 V or 3.3 V. Both are driven by highly-efficient LDO (Low Drop-Out) linear regulators for low noise and high stability.

Configuration pins determine various operating modes by setting predefined conditions for the energy storage element (overcharge or overdischarge voltages), and by selecting the voltage of the high-voltage supply and the low-voltage supply.

The chip integrates all active elements for powering a typical wireless sensor. Five capacitors and two inductors are required, all available in small packages. With only seven external components (external cold-start module not included), integration is maximized, footprint and BOM are minimized, optimizing the time-to-market and the costs of designs.

Device Information

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Package</th>
<th>Body Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>10AEM20940C0000</td>
<td>QFN 28-pin</td>
<td>5x5mm</td>
</tr>
</tbody>
</table>

Evaluation Board

AEM20940 evaluation boards are available at e-peas.com.
Table of Contents

1. **Introduction** ... 6
2. **Pin Configuration and Functions** 7
3. **Absolute Maximum Ratings** .. 8
4. **Thermal Resistance** .. 8
5. **Typical Electrical Characteristics at 25 °C** 9
6. **Recommended Operation Conditions** 11
7. **Functional Block Diagram** ... 12
8. **Theory of Operation** .. 13
 8.1. Power Converters .. 13
 8.2. Operating Modes .. 14
 8.3. Maximum Power Point Tracking 15
 8.4. Storage Element Balancing Circuit for Dual-cell Supercapacitor 16
9. **System Configuration** .. 17
 9.1. Battery and LDOs Configuration 17
 9.2. MPPT Configuration .. 17
 9.3. Primary Battery Configuration 17
 9.4. ZMPPT Configuration .. 17
 9.5. Start-on-battery Configuration 17
 9.6. No-battery Configuration ... 18
 9.7. Supplying an Application Circuit with BUCK 18
 9.8. Storage Element Information 18
 9.9. External Inductors Information 19
 9.10. External Capacitors Information 19
10. **Typical Application Circuits** 20
 10.1. Example Circuit 1 .. 20
 10.2. Example Circuit 2 .. 21
11. **Circuit Behavior** ... 22
 11.1. Cold-start Behavior .. 22
 11.2. Overcharge Mode Behavior 24
 11.3. Shutdown Mode Behavior .. 25
12. **Performance Data** ... 27
 12.1. BOOST Conversion Efficiency for LBOOST = 10 µH .. 27
 12.2. BOOST Conversion Efficiency for LBOOST = 22 µH .. 28
 12.3. BUCK Conversion Efficiency 29
 12.4. Quiescent Current .. 29
 12.5. High-voltage LDO Regulation 30
 12.6. Low-voltage LDO Regulation 30
 12.7. High-voltage LDO Efficiency 31
 12.8. Low-voltage LDO Efficiency 32
13. **Schematic** ... 33
14. **Layout** .. 34
 14.1. Guidelines ... 34
 14.2. Layout Example .. 35
15. **Package Information** .. 36
15.1. Plastic Quad Flatpack No-lead (QFN 28-pin 5x5mm) .. 36
15.2. Board Layout (QFN 28-pin 5x5mm) .. 36
16. Glossary ... 37
17. Revision History ... 39
List of Figures

Figure 1: Simplified schematic view ...6
Figure 2: Pinout diagram QFN 28-pin ...7
Figure 3: Functional block diagram ..12
Figure 4: Simplified schematic view of the AEM20940 ...13
Figure 5: Diagram of the AEM20940 modes ...14
Figure 6: MPP evaluation behavior ...15
Figure 7: Schematic for supplying an application circuit with BUCK ...18
Figure 8: Typical application circuit 1 ..20
Figure 9: Typical application circuit 2 ..21
Figure 10: Cold start with a capacitor connected to BATT ...22
Figure 11: Cold start with a battery connected to BATT ..23
Figure 12: Overcharge mode ..24
Figure 13: Shutdown mode (without primary battery) ...25
Figure 14: Switching to primary battery when battery is overdischarged ...26
Figure 15: Boost efficiency for Isrc at 100μA, 1mA, 10mA and 100mA (LBOOST = 10 µH)27
Figure 16: Boost efficiency for Isrc at 100μA, 1mA and 10mA (LBOOST = 22 µH)28
Figure 17: Buck Efficiency (LBUCK = 10 µH) ..29
Figure 18: Quiescent current with LDOs on and off ..29
Figure 19: HVOUT at 3.3 V and 2.5 V ...30
Figure 20: LVOUT at 1.2 V and 1.8 V ...30
Figure 21: HVOUT efficiency at 1.8V, 2.5V and 3.3 V ...31
Figure 22: Efficiency of buck cascaded with LVOUT at 1.2 V and 1.8 V ...32
Figure 23: Schematic example ..33
Figure 24: Layout example for the AEM20940 and its passive components35
Figure 25: QFN 28-pin 5x5mm drawing (all dimension in mm) ...36
Figure 26: Recommended board layout for QFN 28-pin 5x5mm (all dimension in mm)36
List of Tables

Table 1: Pins description .. 7
Table 2: Absolute maximum ratings ... 8
Table 3: Thermal data ... 8
Table 4: ESD caution ... 8
Table 5: Electrical characteristics .. 9
Table 6: Recommended operating conditions ... 11
Table 7: LDOs configurations .. 14
Table 8: Usage of CFG[2:0] ... 17
Table 9: Usage of SELMPP[1:0] ... 17
Table 10: BOM example for AEM20940 and its required passive components 33
Table 11: Revision history ... 39
1. Introduction

The AEM20940 is a full-featured energy efficient power management circuit capable of charging a storage element (battery or supercapacitor, connected to BATT) from an energy source (connected to SRC) as well as supplying loads at different operating voltages through two power supplying LDO regulators (LVOUT and HVOUT).

The heart of the AEM20940 is a cascade of two regulated switching converters, namely the boost converter and the buck converter, both with high power conversion efficiencies (See Section 12).

At first start-up, as soon as a required cold-start voltage of 380 mV and a scant amount of power of only 100 µW are available from the harvested energy source, the AEM coldstarts. With an optional external module, the cold start voltage can be reduced to 60 mV for a scant amount of power of just 150 μW. After the cold start, the AEM can extract the power available from the source as long as the input voltage is within 50 mV to 3.5 V range. Note that the STONBATT pin makes it possible to bypass the cold start procedure using the pre-charged storage element to start the AEM20940 (see Section 9.5).

Through three configuration pins (CFG[2:0]), the user can select a specific operating mode from a range of seven modes that covers most application requirements without any dedicated external component. These operating modes define the LDO output voltages and the protection levels of the storage element.

The Maximum Power Point (MPP) ratio can be configured using two configuration pins (SELMPP[1:0]) (See Section 9.2). Two logic control pins (ENLV and ENHV) allow to dynamically activate or deactivate the LDO regulators that supply the low and high voltage load. The status pin STATUS[0] alerts the user that the LDOs are operational and can be enabled. This signal can also be used to enable an optional external regulator.

If the battery voltage gets depleted, LVOUT and HVOUT are power-gated and the controller is no longer supplied by the storage element to protect it from further discharge. Around 600 ms before the shutdown of the AEM, the status pin STATUS[1] alerts the user for a clean shutdown of the system. However, if the storage element gets depleted and an optional primary battery is connected on PRIM, the AEM20940 automatically uses it as a source to recharge the storage element before switching back to the ambient source. This guarantees continuous operation even under the most adverse conditions (See Section 8.2.4). STATUS[1] is asserted when the primary battery is providing power.

The status of the MPPT controller is reported with one dedicated status pin (STATUS[2]). The status pin is asserted when an MPP calculation is being performed.
2. Pin Configuration and Functions

![Pinout diagram QFN 28-pin](image)

<table>
<thead>
<tr>
<th>Name</th>
<th>Pin Number</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power pins</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BOOST</td>
<td>1</td>
<td>Output of the boost converter.</td>
</tr>
<tr>
<td>SWBUCK</td>
<td>2</td>
<td>Switching node of the buck converter.</td>
</tr>
<tr>
<td>BUCK</td>
<td>3</td>
<td>Output of the buck converter.</td>
</tr>
<tr>
<td>LVOUT</td>
<td>11</td>
<td>Output of the low voltage LDO regulator.</td>
</tr>
<tr>
<td>HVOUT</td>
<td>14</td>
<td>Output of the high voltage LDO regulator.</td>
</tr>
<tr>
<td>BAL</td>
<td>15</td>
<td>Connection to the mid-point of a dual-cell supercapacitor (optional). Must be connected to GND if not used.</td>
</tr>
<tr>
<td>BATT</td>
<td>16</td>
<td>Connection to the energy storage element, battery or capacitor. Cannot be left floating.</td>
</tr>
<tr>
<td>PRIM</td>
<td>17</td>
<td>Connection to the primary battery (optional). Must be connected to GND if not used.</td>
</tr>
<tr>
<td>CSIN</td>
<td>24</td>
<td>Input of the external cold start module.</td>
</tr>
<tr>
<td>CSOUT</td>
<td>22</td>
<td>Output of the external cold start module.</td>
</tr>
<tr>
<td>SRC</td>
<td>26</td>
<td>Connection to the harvested energy source.</td>
</tr>
<tr>
<td>BUFSRC</td>
<td>27</td>
<td>Connection to an external capacitor buffering the boost converter input.</td>
</tr>
<tr>
<td>SWBOOST</td>
<td>28</td>
<td>Switching node of the boost converter.</td>
</tr>
<tr>
<td>Configuration pins</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CFG[2]</td>
<td>4</td>
<td>Used for the configuration of the threshold voltages of the energy storage element and the output voltage of the LDOs.</td>
</tr>
<tr>
<td>CFG[1]</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>CFG[0]</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>SELMPP[1]</td>
<td>7</td>
<td>Used for the configuration of the MPP ratio.</td>
</tr>
<tr>
<td>SELMPP[0]</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>FB_PRIM_D</td>
<td>9</td>
<td>Used for the configuration of the primary battery overdischarge voltage (optional). Must be connected to GND if not used.</td>
</tr>
<tr>
<td>FB_PRIM_U</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>STONBATT</td>
<td>13</td>
<td>Used for the configuration of the cold start (optional). Must be connected to GND if not used.</td>
</tr>
<tr>
<td>ZMPP</td>
<td>25</td>
<td>Used for the configuration of the ZMPPT (optional). Must be left floating if not used.</td>
</tr>
</tbody>
</table>

Table 1: Pins description (Part 1)
3. Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Voltage on BATT, BAL, PRIM, BOOST, SWBOOST, HVOUT, ENLV, STONBATT</th>
<th>Rating</th>
<th>5.5 V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage on SRC, BUFSRC, CSIN, CSOUT, ZMPP</td>
<td></td>
<td></td>
<td>3.5 V</td>
</tr>
<tr>
<td>Voltage on BUCK, SWBUCK, LVOUT, CFG[2:0], FB_PRIM_U, FB_PRIM_D, SELMPP[1:0], ENHV</td>
<td></td>
<td></td>
<td>2.75 V</td>
</tr>
<tr>
<td>Operating junction temperature</td>
<td></td>
<td></td>
<td>-40°C to +125°C</td>
</tr>
<tr>
<td>Storage temperature</td>
<td></td>
<td></td>
<td>-65°C to +150°C</td>
</tr>
</tbody>
</table>

4. Thermal Resistance

<table>
<thead>
<tr>
<th>Package</th>
<th>θJA</th>
<th>θJC</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>QFN 28-pin</td>
<td>38.3</td>
<td>2.183</td>
<td>°C/W</td>
</tr>
</tbody>
</table>

Table 2: Absolute maximum ratings

Table 3: Thermal data

ESD CAUTION

ESD (ELECTROSTATIC DISCHARGE) SENSITIVE DEVICE
These devices have limited built-in ESD protection and damage may thus occur on devices subjected to high-energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality

<table>
<thead>
<tr>
<th>VESD</th>
<th>Human-body model according to Jedec JS001-2017</th>
<th>± 500 V</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Charge device model according to Jedec JS002-2014</td>
<td>± 1000 V</td>
</tr>
</tbody>
</table>

Table 4: ESD caution
5. Typical Electrical Characteristics at 25 °C

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Condition</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_{SRC_CS}</td>
<td>Source power required to coldstart.</td>
<td>During cold start.</td>
<td>150</td>
<td></td>
<td></td>
<td>μW</td>
</tr>
<tr>
<td>V_{SRC}</td>
<td>Input voltage of the energy source (maximum given by the open-circuit voltage).</td>
<td>During cold start.</td>
<td>0.06</td>
<td>3.5</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>After cold start.</td>
<td>0.05</td>
<td>3.5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Input voltage and input power without the cold start circuit

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Condition</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_{SRC_CS}</td>
<td>Source power required to coldstart.</td>
<td>During cold start.</td>
<td>100</td>
<td></td>
<td></td>
<td>μW</td>
</tr>
<tr>
<td>V_{SRC}</td>
<td>Input voltage of the energy source (maximum given by the open-circuit voltage).</td>
<td>During cold start.</td>
<td>0.38</td>
<td>3.5</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>After cold start.</td>
<td>0.05</td>
<td>3.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{SRC}</td>
<td>Harvested current from the energy source.</td>
<td>$L_{BOOST} = 10 \ \mu H.$</td>
<td>110</td>
<td></td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$L_{BOOST} = 22 \ \mu H.$</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{MPP}</td>
<td>Voltage level of the Maximum Power Point.</td>
<td>After cold start.</td>
<td>0.05</td>
<td>3.5</td>
<td></td>
<td>V</td>
</tr>
</tbody>
</table>

DC-DC converters

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Condition</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{BOOST}</td>
<td>Output voltage of the boost converter.</td>
<td>During normal operation.</td>
<td>2.2</td>
<td>4.5</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>V_{BUCK}</td>
<td>Output voltage of the buck converter.</td>
<td></td>
<td>2</td>
<td>2.2</td>
<td>2.5</td>
<td></td>
</tr>
<tr>
<td>I_{BUCK}</td>
<td>Total load current supplied by the BUCK converter (including LVOUT current I_{LV}).</td>
<td>$L_{BUCK} = 10 \ \mu H.$</td>
<td>0</td>
<td>20</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$L_{BUCK} = 4 \ \mu H.$</td>
<td>0</td>
<td>50</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Storage element

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Condition</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{BATT}</td>
<td>Voltage on the storage element.</td>
<td></td>
<td>0</td>
<td>4.5</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>V_{PRIM}</td>
<td>Voltage on the primary battery.</td>
<td></td>
<td>0.6</td>
<td>4.5</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>I_{PRIM}</td>
<td>Current from the primary battery.</td>
<td></td>
<td>20</td>
<td></td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>$V_{FB_PRIM_U}$</td>
<td>Feedback for defining the overdischarge voltage level on the primary battery.</td>
<td></td>
<td>0.15</td>
<td>1.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{OVCH}</td>
<td>Maximum voltage accepted on the storage element before disabling the boost converter.</td>
<td>See Table 8.</td>
<td>2.7</td>
<td>4.5</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>V_{CHRDY}</td>
<td>Minimum voltage required on the storage element before enabling the LDO when coming from WAKE-UP MODE.</td>
<td>After cold start See Table 8.</td>
<td>2.3</td>
<td>4.04</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>V_{OVDIS}</td>
<td>Minimum voltage accepted on the storage element before switching to primary battery or entering SHUTDOWN MODE.</td>
<td>See Table 8.</td>
<td>2.2</td>
<td>3.6</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>I_{Q}</td>
<td>Quiescent current on BATT when the boost converter is not running.</td>
<td>$V_{BATT} = 3 \ \text{V} \ ; \ \text{LDOs disabled.}$</td>
<td>400</td>
<td></td>
<td></td>
<td>nA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{BATT} = 3 \ \text{V} \ ; \ \text{LDOs enabled.}$</td>
<td>600</td>
<td></td>
<td></td>
<td>nA</td>
</tr>
</tbody>
</table>

Low-Voltage LDO regulator

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Condition</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{LV}</td>
<td>Output voltage of the low-voltage LDO.</td>
<td>See Table 8.</td>
<td>1.2</td>
<td>1.8</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>I_{LV}</td>
<td>Load current supplied by the low-voltage LDO.</td>
<td>$I_{BUCK} = 10 \ \mu H.$</td>
<td>0</td>
<td>20</td>
<td></td>
<td>mA</td>
</tr>
</tbody>
</table>

High-Voltage LDO regulator

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Condition</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{HV}</td>
<td>Output voltage of the high-voltage LDO.</td>
<td>See Table 8.</td>
<td>1.8</td>
<td>3.3</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>I_{HV}</td>
<td>Load current supplied by the high-voltage LDO.</td>
<td></td>
<td>0</td>
<td>80</td>
<td></td>
<td>mA</td>
</tr>
</tbody>
</table>

Table 5: Electrical characteristics (Part 1)
Timing

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter Description</th>
<th>Condition</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T_{MPPT,\text{VOC}}$</td>
<td>Time during which the AEM20940 stops pulling current on SRC to measure the harvester open circuit voltage (V_{VOC}).</td>
<td></td>
<td>328</td>
<td></td>
<td></td>
<td>ms</td>
</tr>
<tr>
<td>$T_{MPPT,\text{PERIOD}}$</td>
<td>Period of the MPPT V_{DC} evaluations.</td>
<td></td>
<td>21</td>
<td></td>
<td></td>
<td>s</td>
</tr>
<tr>
<td>T_{CRIT}</td>
<td>Time before shutdown once STATUS[1] has been asserted (see Section 8.2.5 and Figure 2).</td>
<td></td>
<td>400</td>
<td>600</td>
<td>800</td>
<td>ms</td>
</tr>
</tbody>
</table>

Logic output pins

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter Description</th>
<th>Condition</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>STATUS[2:0]</td>
<td>Logic output levels on the status pins.</td>
<td>Logic HIGH (H).</td>
<td>V_{BATT} - 0.1</td>
<td>V_{BATT}</td>
<td>V_{BATT} + 0.1</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Logic LOW (L).</td>
<td>GND - 0.1</td>
<td>GND</td>
<td>GND + 0.1</td>
<td>V</td>
</tr>
</tbody>
</table>

Table 5: Electrical characteristics (Part 2)

1. Minimum V_{SRC} value for harvesting capabilities after coldstart.
2. Maximum V_{MPPT} value only when the MPPT is configured on ZMPP (see Section 9.2).
3. To stay in NORMAL MODE, V_{BATT} minimum voltage must stay above V_{OVDIS}.
4. The variability of V_{LV} at 1 mA is 1% (typical and preliminary result from simulations).
5. The variability of V_{HV} at 1 mA is 1.3% (typical and preliminary result from simulations).
6. Recommended Operation Conditions

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_{SRC}</td>
<td>BUFSRC pin decoupling capacitor.</td>
<td>8</td>
<td>10</td>
<td>22</td>
<td>µF</td>
</tr>
<tr>
<td>C_{BOOST}</td>
<td>Output capacitor of the boost converter.</td>
<td>10</td>
<td>22</td>
<td></td>
<td>µF</td>
</tr>
<tr>
<td>L_{BOOST}</td>
<td>Inductor of the boost converter.</td>
<td>4</td>
<td>10</td>
<td></td>
<td>µH</td>
</tr>
<tr>
<td>C_{BUCK}</td>
<td>Output capacitor of the buck converter.</td>
<td>8</td>
<td>10</td>
<td></td>
<td>µF</td>
</tr>
<tr>
<td>L_{BUCK}</td>
<td>Inductor of the buck converter.</td>
<td>4</td>
<td>10</td>
<td>25</td>
<td>µH</td>
</tr>
<tr>
<td>C_{LV}</td>
<td>Low-voltage LDO regulator decoupling capacitor.</td>
<td>8</td>
<td>10</td>
<td>14</td>
<td>µF</td>
</tr>
<tr>
<td>C_{HV}</td>
<td>High-voltage LDO regulator decoupling capacitor.</td>
<td>8</td>
<td>10</td>
<td>14</td>
<td>µF</td>
</tr>
<tr>
<td>C_{BATT}</td>
<td>Optional - Capacitor connected on BATT if no storage element is connected (see Section 9.6 and Section 9.8).</td>
<td>22</td>
<td></td>
<td></td>
<td>µF</td>
</tr>
<tr>
<td></td>
<td>LDOs disabled.</td>
<td></td>
<td></td>
<td></td>
<td>µF</td>
</tr>
<tr>
<td></td>
<td>LDOs enabled.</td>
<td>150</td>
<td></td>
<td></td>
<td>µF</td>
</tr>
<tr>
<td>R_{ZMPPP}</td>
<td>Optional - Resistor for the ZMPPT configuration (see Section 9.4).</td>
<td>10</td>
<td></td>
<td>1M</td>
<td>Ω</td>
</tr>
<tr>
<td>R_{P}</td>
<td>Optional - Sum of resistors used to define the primary battery minimum voltage. $R_{P} = R_{7} + R_{8}$ (see Section 9.3).</td>
<td>100</td>
<td></td>
<td>500</td>
<td>kΩ</td>
</tr>
</tbody>
</table>

Logic input pins

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Logic HIGH (H).</th>
<th>Logic LOW (L).</th>
<th>Connect to</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENHV</td>
<td>Enabling pin for the high-voltage LDO.</td>
<td>Connect to BUCK.</td>
<td>Connect to GND.</td>
<td></td>
</tr>
<tr>
<td>ENLV</td>
<td>Enabling pin for the low-voltage LDO.</td>
<td>Connect to BUCK or BOOST.</td>
<td>Connect to GND.</td>
<td></td>
</tr>
<tr>
<td>CFG[2:0]</td>
<td>Configuration pins for the storage element protection threshold voltages (see Table 8).</td>
<td>Connect to BUCK.</td>
<td>Connect to GND.</td>
<td></td>
</tr>
<tr>
<td>SELMPP[1:0]</td>
<td>Configuration pins for the MPPT ratio (see Table 9).</td>
<td>Connect to BUCK.</td>
<td>Connect to GND.</td>
<td></td>
</tr>
<tr>
<td>STONBATT</td>
<td>Configuration pin to select the energy source during the coldstart.</td>
<td>Connect to BATT.</td>
<td>Connect to GND.</td>
<td></td>
</tr>
</tbody>
</table>

Table 6: Recommended operating conditions
7. Functional Block Diagram

Figure 3: Functional block diagram
8. Theory of Operation

8.1. Power Converters

8.1.1. Boost Converter

The boost (or step-up) converter raises the voltage available at BUFSRC to a level suitable for charging the storage element, in the range of 2.2 V to 4.5 V, according to the system configuration. This voltage \(V_{\text{BOOST}} \) is available at the BOOST pin.

The switching transistors of the boost converter are M3 and M4, with the switching node available externally at SWBOOST. The reactive power components of this converter are the external inductor \(L_{\text{BOOST}} \) and the external capacitor \(C_{\text{BOOST}} \).

The MPPT control circuit (see Section 8.3) periodically disconnects the source on SRC pin from the BUFSRC pin with the transistor M1 in order to measure the open-circuit voltage of the harvester on SRC and define the optimal SRC regulation voltage.

BUFSRC is decoupled by the capacitor \(C_{\text{SRC}} \), which smooths the voltage against the current pulses induced by the boost converter.

The storage element is connected to the BATT pin. Its voltage is named \(V_{\text{BATT}} \). This node is linked to BOOST through the transistor M2. In NORMAL MODE (see Section 8.2.2), this transistor effectively shorts the battery to the BOOST node \((V_{\text{BATT}} = V_{\text{BOOST}}) \). When energy harvesting is occurring, the boost converter delivers a current that is shared between the battery and the LDOs. M2 is opened to disconnect the storage element when \(V_{\text{BATT}} \) reaches \(V_{\text{VDDS}} \). However, in such a scenario, the AEM20940 offers the possibility of connecting a primary battery to recharge \(V_{\text{BATT}} \) up to \(V_{\text{CHRDY}} \). The transistor M9 connects PRIM to BUFSRC and the transistor M1 is opened to disconnect the SRC input pin as explained in the PRIMARY BATTERY MODE section.

More explanations about the different modes can be found in Section 8.2.

8.1.2. Buck Converter

The buck (or step-down) converter lowers the voltage from \(V_{\text{BOOST}} \) to a constant \(V_{\text{BUCK}} \) value of 2.2 V. This voltage is available at the BUCK pin. The switching transistors of the buck converter are M5 and M6, with the switching node available externally at SWBUCK. The reactive power components of the buck converter are the external inductor \(L_{\text{BUCK}} \) and the external capacitor \(C_{\text{BUCK}} \).
8.1.3. LDO Outputs

Two Low Drop-Out linear regulators are available to supply loads at different operating voltages:

- Through M7, **BOOST** supplies the high-voltage LDO that powers its load through **HVOUT**. This regulator delivers a clean voltage named **VHV**. When using the built-in configuration modes, an output voltage of 1.8 V, 2.5 V or 3.3 V can be selected. The output is decoupled by the external capacitor **CHV**.

- Through M8, **VBUCK** supplies the low-voltage LDO that powers its load through **LVOUT**. This regulator delivers a clean voltage named **VLV** of 1.2 V or 1.8 V. The output is decoupled by the external capacitor **CLV**.

See Table 5 for **HVOUT** and **LVOUT** maximum current values (respectively **IHV** and **ILV**).

Both the high-voltage and the low-voltage outputs can be dynamically enabled or disabled respectively with the logic control pins **ENHV** and **ENLV** (see Table below).

<table>
<thead>
<tr>
<th>ENLV</th>
<th>LVOUT</th>
<th>ENHV</th>
<th>HVOUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>Disabled</td>
<td>L</td>
<td>Disabled</td>
</tr>
<tr>
<td>H</td>
<td>Enabled</td>
<td>H</td>
<td>Enabled</td>
</tr>
</tbody>
</table>

Table 7: LDOs configurations

8.2. Operating Modes

8.2.1. Deep Sleep & Wake Up Modes

The **DEEP SLEEP MODE** is a state where all nodes are deeply discharged and there is no available energy to be harvested. As soon as the required cold-start voltage of 380 mV and the required power of 100 µW becomes available on **SRC**, **VBOOST** and **VBuck** rise up to a voltage of 2.2 V. **VBOOST** then rises up to **VOVCH**.

At this stage, both LDOs are internally disabled. Therefore, **STATUS[0]** is low as shown in Figure 10 and Figure 11. When **VBOOST** reaches **VOVCH**, two scenarios are possible:

- In the first scenario, a supercapacitor or a capacitor having a voltage lower than **VCHRDY** is connected to the **BATT** node (see Section 8.2.1.2).

- In the second scenario, a charged battery is connected to the **BATT** node (see Section 8.2.1.3).

8.2.1.1. Wake Up Mode with the External Cold Start Module

The external cold-start module is an optional auto-oscillating circuit which allows to reduce the minimum input voltage required to coldstart the AEM. During the cold start, the external module input (connected to **CSIN**) is internally connected with the energy source (connected to **SRC**). Once 60 mV and 150 µW are available on **SRC**, the external cold-start module generates at least 400 mV on **CSOUT**. This pin is connected to the AEM20940 internal cold-start module and allows waking up the AEM.

Once **VBOOST** and **VBuck** rise up to a voltage of 2.2 V, the AEM disconnects the link between **CSIN** and **SRC**, and extract power directly from the input energy source through **SRC**.

If the external module is not used on the application, **CSOUT** and **SRC** must be shorted and **CSIN** left floating. In this condition, 380 mV and a power of just 100 µW are required to cold start the AEM.

8.2.1.2. Supercapacitor as a Storage Element

If the storage element is a supercapacitor, the storage element may need to be charged from 0 V. The boost converter charges **BATT** from the input source and by modulating the conductance of M1 and M2. During the charge of the **BATT** node, both LDOs are disabled and **STATUS[0]** is set to low. When **VBATT** reaches **VCHRDY**, the circuit enters **NORMAL MODE**, **STATUS[0]** is asserted and the LDOs can be enabled by the user using **ENLV** and **ENHV** control pins as shown in Figure 10.

8.2.1.3. Battery as a Storage Element

If the storage element is a battery but its voltage is lower than **VCHRDY**, the storage element first needs to be charged until it reaches **VCHRDY**. This allows a safety margin to ensure that the storage element is able to provide the required power before enabling the outputs (LDOs). Once **VBATT** exceeds **VCHRDY**, or if the battery was initially charged above **VCHRDY**, the circuit enters **NORMAL MODE**. **STATUS[0]** is asserted and the LDOs can be dynamically enabled or disabled through **ENLV** and **ENHV** as shown in Figure 11.
8.2.2. Normal Mode

Once the AEM enters NORMAL MODE, it stays in this mode as long as the following condition is met:

\[V_{OVDIS} < V_{\text{BATT}} < V_{OVCH} \]

The AEM20940 will switch to another mode in the following cases:

- \(V_{\text{BATT}} \) increases above \(V_{OVCH} \) because the source provides more power than the load consumes. The circuit enters OVERCHARGE MODE, as explained in Section 8.2.3.

- \(V_{\text{BATT}} \) falls below \(V_{OVDIS} \) due to a lack of power from the source. In this case, either the circuit enters SHUTDOWN MODE as explained in Section 8.2.5, or, if a charged primary battery is connected on PRIM, the circuit enters PRIMARY BATTERY MODE as explained in Section 8.2.4.

8.2.3. Overcharge Mode

When \(V_{\text{BATT}} \) reaches \(V_{OVCH} \), the battery charge is complete. The AEM maintains \(V_{\text{BATT}} \) around \(V_{OVCH} \) with a hysteresis of a few mV as shown in Figure 12, to prevent damage to the storage element and to the internal circuitry. In this configuration, the boost converter is periodically activated to maintain \(V_{\text{BATT}} \) and the LDOs are available. Moreover, when the boost converter is not activated, the transistor M1 in Figure 4 is opened to prevent current from the source to the storage element when \(V_{\text{SRC}} \) is higher than \(V_{OVCH} \).

8.2.4. Primary Battery Mode

When \(V_{\text{BATT}} \) drops below \(V_{OVDIS} \), the circuit compares the voltage on PRIM with the voltage on FB_PRIM_U to determine whether a charged primary battery is connected on PRIM. The voltage on FB_PRIM_U is set thanks to two optional resistors as explained in Section 9.3.

If the following formula is true, the circuit considers the primary battery as available and the circuit enters PRIMARY BATTERY MODE.

\[\frac{V_{\text{PRIM}}}{4} > V_{\text{FB_PRIM_U}} \]

In that mode, transistor M1 is opened and the primary battery is connected to BUFSRC through transistor M9 to become the source of energy of the AEM20940. STATUS[1] is asserted as long as the chip is in PRIMARY BATTERY MODE.

The AEM remains in this mode until \(V_{\text{BATT}} \) reaches \(V_{\text{CHRDY}} \). At that point, the circuit enters NORMAL MODE.

If no primary battery is used in the application, PRIM, FB_PRIM_U and FB_PRIM_D must be tied to GND.

8.2.5. Shutdown Mode

When \(V_{\text{BATT}} \) drops below \(V_{OVDIS} \) and no power is available from a primary battery, the circuit enters SHUTDOWN MODE, as shown in Figure 13, to prevent deep discharge that could damage the storage element and make the LDOs unstable. The circuit asserts STATUS[1] to warn the application that a shutdown may occur. Both LDO regulators remain enabled during the next 600 ms (\(T_{CRIT} \)).

If no primary battery is used, this mechanism allows the application circuit, whether it is powered on LVOUT or HVOUT, to trigger an interrupt by the low to-high transition of STATUS[1], and to take all appropriate actions before LVOUT and HVOUT are disabled.

If \(V_{\text{BATT}} \) recovers to \(V_{OVDIS} \) within \(T_{CRIT} \) (about 600 ms), the AEM switches back to NORMAL MODE. But if, after \(T_{CRIT} \), \(V_{\text{BATT}} \) does not reach \(V_{OVDIS} \), the circuit enters DEEP SLEEP MODE. Both LDOs are disabled and BATT is disconnected from BOOST to avoid damaging the battery due to the overdischarge. From now on, the AEM must go through the wake-up procedure described in the Section 8.2.1.

8.3. Maximum Power Point Tracking

During NORMAL MODE, SHUTDOWN MODE and a part of WAKE-UP MODE, the boost converter is regulated thanks to an internal MPPT (Maximum Power Point Tracking) module. \(V_{\text{MPPT}} \) is the voltage level of the MPP, and depends on the input power available at the source.

The MPPT module evaluates \(V_{\text{MPPT}} \) as a constant fraction of the open-circuit voltage of the source \(V_{OC} \). The ratio between \(V_{\text{MPPT}} \) and \(V_{OC} \) can be configured with the SELMPP[1:0] pins.

The AEM20940 periodically measures \(V_{OC} \) by stopping to pull current from the source (SRC pin) during \(T_{\text{MPPT,VOCL}} \) (328 ms) every \(T_{\text{MPPT,PERIOD}} \) (21 s), thus letting the source rise to its open-circuit voltage. The source target voltage \(V_{\text{MPPT}} \) is then redefined as a fraction of the previously measured \(V_{OC} \). This way, the MPPT module adapts to the harvester variations due to varying ambient conditions. The behavior of the MPPT module is shown in Figure 6.
With the exception of this sampling process, the source voltage V_{SRC} is continuously compared to V_{MPP}:

- When V_{SRC} exceeds V_{MPP} by a small hysteresis, the boost converter is switched on, extracting electric charges from the source, thus lowering its voltage.
- When V_{SRC} falls below V_{MPP} by a small hysteresis, the boost converter is switched off, allowing the harvester to accumulate new electric charges into C_{SRC}, which voltage rises.

This way, the boost converter regulates its input voltage so that the electric current (or flow of electric charges) that enters the boost converter yields the best power transfer from the harvester under any ambient conditions. The AEM20940 supports any V_{MPP} level in the range from 50 mV to 3.5 V. It offers a choice of three values for the $V_{\text{MPP}} / V_{\text{OC}}$ ratio through the configuration pins $\text{SELMPP}[1:0]$ as shown in Table 9. It is also possible to regulate the source voltage by matching the input impedance of the BOOST converter with an impedance connected to the ZMPP terminal thanks to the ZMPPT feature, by setting $\text{SELMPP}[1:0]$ to HH (see Section 9.4). The status of the MPPT controller is reported through one dedicated status pins $\text{STATUS}[2]$. This status pin is asserted when a MPPT module periodic V_{OC} evaluation is being performed.

8.4. Storage Element Balancing Circuit for Dual-cell Supercapacitor

When using a dual-cell supercapacitor, it is necessary to keep both cells at similar voltages to avoid damage due to a potential over-voltage on one cell. This is ensured by the AEM20940 storage element balancing circuit.

If a battery, a capacitor or a single-cell supercapacitor is connected on BATT, BAL is connected to GND and the storage element balancing circuit is disabled.

If a dual-cell supercapacitor is connected on BATT, BAL is connected to the node between the two cells of the supercapacitor. The storage element balancing circuit compensates for any mismatch of the two cells that could overcharge one of both cells. It ensures that BAL remains close to $V_{\text{BATT}} / 2$.

9. System Configuration

9.1. Battery and LDOs Configuration

<table>
<thead>
<tr>
<th>Configurations pins</th>
<th>Storage element threshold voltages</th>
<th>LDOs output voltages</th>
<th>Typical use</th>
</tr>
</thead>
<tbody>
<tr>
<td>H H H</td>
<td>4.12 V</td>
<td>3.67 V</td>
<td>3.60 V</td>
</tr>
<tr>
<td>H H L</td>
<td>4.12 V</td>
<td>4.04 V</td>
<td>3.60 V</td>
</tr>
<tr>
<td>H L H</td>
<td>4.12 V</td>
<td>3.67 V</td>
<td>3.01 V</td>
</tr>
<tr>
<td>H L L</td>
<td>2.70 V</td>
<td>2.30 V</td>
<td>2.20 V</td>
</tr>
<tr>
<td>L H H</td>
<td>4.50 V</td>
<td>3.67 V</td>
<td>2.80 V</td>
</tr>
<tr>
<td>L H L</td>
<td>4.50 V</td>
<td>3.92 V</td>
<td>3.60 V</td>
</tr>
<tr>
<td>L L H</td>
<td>3.63 V</td>
<td>3.10 V</td>
<td>2.80 V</td>
</tr>
<tr>
<td>L L L</td>
<td>Reserved for future use.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 8: Usage of CFG[2:0]

Through three configuration pins (CFG[2:0]), the user can set a particular operating mode from a range that covers most application requirements, without any dedicated external component as shown in Table 8. The three threshold levels are defined as:
- VOVCH: maximum voltage accepted on the storage element before disabling the boost converter.
- VCHRDY: minimum voltage required on the storage element after a cold start before enabling the LDOs.
- VOVDIS: minimum voltage accepted on the storage element before considering the storage element as depleted.

See Section 8 for more information about the purposes of these thresholds.

The two LDOs output voltages are called VHV and VL for the high and low output voltages respectively. Seven combinations of these voltage levels are hard-wired and selectable through the CFG[2:0] configuration pins, covering most application cases.

9.2. MPPT Configuration

Two dedicated configuration pins, SELMPP[1:0], allow selecting the MPP tracking ratio based on the characteristic of the input power source.

<table>
<thead>
<tr>
<th>SELMPP[1]</th>
<th>SELMPP[0]</th>
<th>VMPP / VOC</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>L</td>
<td>50%</td>
</tr>
<tr>
<td>L</td>
<td>H</td>
<td>55%</td>
</tr>
<tr>
<td>H</td>
<td>L</td>
<td>75%</td>
</tr>
<tr>
<td>H</td>
<td>H</td>
<td>ZMPP</td>
</tr>
</tbody>
</table>

Table 9: Usage of SELMPP[1:0]

9.3. Primary Battery Configuration

To use the primary battery, it is mandatory to determine VPRIM_MIN, the voltage at which the primary battery is considered as fully depleted. The circuit uses a resistive divider between BUCK and FB_PRIM_D to define the voltage on FB_PRIM_U as VPRIM_MIN divided by 4. During VPRIM_MIN evaluation, the circuit connects FB_PRIM_D to GND.

When VPRIM_MIN is not evaluated, FB_PRIM_D is left floating to avoid quiescent current on the resistive divider. The resistors are calculated as follows:
- \(R_P = R_7 + R_8 \)
- \(100k \Omega \leq R_7 \leq 500k \Omega \)
- \(R_7 = \frac{V_{PRIM_MIN}}{4} \cdot R_P \cdot \frac{1}{2.2V} \)
- \(R_8 = R_P - R_7 \)

NOTE: FB_PRIM_U, FB_PRIM_D and PRIM must be tied to GND if no primary battery is used.

9.4. ZMPPT Configuration

Instead of working at a ratio of the open-circuit voltage, the AEM20940 can regulate the input impedance of the BOOST converter so that it matches a constant impedance connected to the ZMPP pin (\(R_{ZMPP} \)). In this case, the AEM20940 regulates VSRC at a voltage equal to the product of the ZMPP impedance and the current available at the SRC input.
- \(10\Omega \leq R_{ZMPP} \leq 1M\Omega \)
9.5. Start-on-battery Configuration

Alternatively to the cold start procedure described in Section 8.2.1, by connecting STONBATT to BATT, the circuit can also start with the energy provided by the storage element connected on BATT if its voltage is higher than \(V_{\text{CHRDY}} \).

NOTE: The AEM20940 will not start if the voltage on BATT is lower than \(V_{\text{CHRDY}} \).

9.6. No-battery Configuration

If the application doesn’t use a storage element, the PCB must include a capacitor on the BATT pin. See Section 9.8 for \(C_{\text{BATT}} \) value.

The storage element may not be necessary in the following cases:
- If the harvested energy source is permanently available and covers the application purposes.
- If the application does not need to store energy when the harvested energy source is not available.

9.7. Supplying an Application Circuit with BUCK

It is possible to supply an application circuit directly from BUCK, with the benefit of high BATT to BUCK efficiency, provided that the following conditions are met:
- The application circuit can be supplied from a voltage in the 2.0 V - 2.5 V range (\(V_{\text{BUCK}} \) is typically 2.2 V with ripple, see Table 5).
- The sum of the following currents must be below the maximum \(I_{\text{BUCK}} \) value (see Table 5):
 - Current of the load connected to BUCK.
 - Current of the load connected to LVOUT.
- The application circuit on BUCK does not pull current during the AEM20940 cold start.

To satisfy the last condition, the following circuit may be implemented:

![Figure 7: Schematic for supplying an application circuit with BUCK](image)

Q1 is a N-MOSFET, whose gate is driven by STATUS[0] with R1 as a pull-down resistor. When the AEM20940 is in DEEP SLEEP MODE or in WAKE-UP MODE, STATUS[0] is LOW (see Section 8.2), ensuring that Q1 is non-conducting, and thus that the application circuit is not supplied.

When the AEM20940 switches from WAKE-UP MODE to NORMAL MODE, STATUS[0] is HIGH, making Q1 conducting. The application circuit is then supplied by BUCK, and remains so when the AEM20940 is in NORMAL MODE, OVERCHARGE MODE, PRIMARY BATTERY MODE and SHUTDOWN MODE.

Q1 must be chosen as follows:
- Low Gate-Source Leakage \(I_{\text{GSS}} \).
- Low Zero Gate Voltage Drain Current \(I_{\text{DSS}} \).
- Drain-Source On-State Resistance \(R_{\text{DS(on)}} \) low enough to supply application circuit with an acceptable voltage drop.
- \(V_{\text{GS}} \) maximum voltage must be above \(V_{\text{OVCH}} \) (STATUS[0] HIGH voltage is \(V_{\text{BOOST}} \)).
- Maximum gate-source threshold voltage \(V_{\text{GSTM}} \) matches the following, with \(V_{\text{BUCK,MAX}} \) being \(V_{\text{BUCK,MAX}} \) maximum value stated in Table 5:

\[
V_{\text{GSTM}} < V_{\text{VDIS}} - V_{\text{BUCK,MAX}}
\]

9.8. Storage Element Information

The energy storage element of the AEM20940 can be a rechargeable battery, a supercapacitor or a large capacitor. It should be chosen so that its voltage does not fall below \(V_{\text{VDIS}} \) even during occasional peaks of the load current. If the internal resistance of the storage element cannot sustain this voltage limit, it is advisable to buffer the battery by decoupling it with a capacitor.

The BATT pin, connecting the storage element, must never be left floating. If the application expects a disconnection of the battery (e.g., because of a user removable connector), the PCB must include a capacitor:
- If the LDOs are used, the minimum needed capacitor value is 150 µF.
- If the LDOs are not used, the minimum needed capacitor value is 22 µF.

The leakage current of the storage element should be small as leakage currents directly impact the quiescent current of the subsystem.
9.9. External Inductors Information

The AEM20940 operates with two standard miniature inductors. Switching frequency must be at least 10 MHz for both. Low equivalent series resistance (ESR) favors the power conversion efficiency of the boost and buck converters.

L\text{BOOST}

The AEM20940 circuit is typically implemented with one of the following values on \(L\text{BOOST} \):

- 10 µH (peak current min. 250 mA) allows higher current from \(\text{SRC} \) to \(\text{BATT} \).
- 22 µH (peak current min. 115 mA) allows better efficiencies, especially at low \(\text{SRC} \) voltages.

L\text{BUCK}

The buck inductor \(L\text{BUCK} \) must sustain a peak current of at least 50 mA. The recommended value is 10 µH.

9.10. External Capacitors Information

The AEM20940 operates with:

- Four identical standard miniature ceramic capacitors of 10 µF.
- One miniature ceramic capacitor of 22 µF.

The leakage current of the capacitors should be small as leakage currents directly impact the quiescent current of the subsystem.

C\text{SRC}

This capacitor acts as an energy buffer at the input of the boost converter. It prevents large voltage fluctuations of \(V_{\text{SRC}} \) when the boost converter is switching. The recommended value is 10 µF +/- 20%.

C\text{BUCK}

This capacitor acts as an energy buffer for the buck converter. It also reduces the voltage ripple induced by the current pulses inherent to the switching mode of the converter. The recommended value is 10 µF +/- 20%.

C\text{BOOST}

This capacitor acts as an energy buffer for the boost converter. It also reduces the voltage ripple induced by the current pulses inherent to the switching mode of the converter. The recommended value is 22 µF +/- 20%.

C\text{HV} / C\text{LV}

These capacitors ensure a high-efficiency load regulation of the high-voltage and low-voltage LDO regulators. Closed-loop stability requires the value to be in the range of 8 µF to 14 µF.
10. Typical Application Circuits

10.1. Example Circuit 1

The energy source is a thermoelectric generator and the storage element is a standard Li-ion battery cell. The radio communication is supplied by HVOUT set at 3.3 V. The micro-controller that controls the application is supplied by LVOUT set at 1.8 V.

STONBATT is tied to BATT, bypassing the cold-start procedure, to start thanks to the energy stored in the pre-charged Li-ion battery cell.

Once the start-on-battery configuration is enabled, the external cold-start module is not useful for this application and by consequence, CSOUT and SRC are shorted.

This circuit uses a pre-defined AEM configuration, typical of systems that use standard components for radio and energy storage.

The operating mode pins are set as follows:
- \(\text{CFG}[2:0] = \text{HHH} \) (all to \(\text{V_BUCK} \))

Referring to Table 8, in this mode, the threshold voltages are:
- \(V_{\text{OVCH}} = 4.12 \text{ V} \)
- \(V_{\text{CHRDY}} = 3.67 \text{ V} \)
- \(V_{\text{OVDIS}} = 3.60 \text{ V} \)

Moreover, the LDOs output voltages are:
- \(V_{\text{HV}} = 3.3 \text{ V} \)
- \(V_{\text{LV}} = 1.8 \text{ V} \)

A primary battery is also connected as a back-up solution. The minimal level allowed on this battery is set at 3.5 V. Following equations from Section 9.3:
- \(R_p = 0.5 \Omega \)
- \(R_7 = \frac{3.5V}{4} \cdot 0.5 \Omega \cdot \frac{1}{2.2V} = 200k\Omega \)
- \(R_8 = 0.5 \Omega - 200k\Omega = 300k\Omega \)

The MPP configuration pins SELMPP[1:0] are tied to \(\text{GND} \) (logic LOW), thus, selecting an MPP ratio of 50%.

The LVOUT LDO output is enabled by tying ENLV to BUCK. The micro-controller is supplied by LVOUT, that is enabled when \(\text{V_BATT} \) and \(\text{V_BOOST} \) voltage rise above \(V_{\text{CHRDY}} \).

The application software can enable or disable the radio transceiver supply with a GPIO connected to ENHV.
10.2. Example Circuit 2

The energy source is a thermoelectric generator and the storage element is a dual-cell supercapacitor. Please note that the supercapacitor might be completely depleted during the cold start. Consequently, STONBATT is tied to GND to use the input energy source only.

To decrease the minimum voltage required for the cold start, the external cold-start module has been connected to CSIN and CSOUT.

Moreover, BAL is connected to the dual-cell supercapacitor to compensate for any mismatch between the two cells and, in that way, protect the supercapacitor.

A micro-controller acts as the application master. The operating mode pins are set as follows:

- CFG[2:0] = LHL

The storage element voltages are set as follows with a custom configuration:

- \(V_{OVCH} = 4.5 \text{ V} \)
- \(V_{CHRDY} = 3.92 \text{ V} \)
- \(V_{OVDIS} = 3.6 \text{ V} \)

The LDO voltages are set as follows:

- \(V_{HV} = 3.3 \text{ V} \)
- \(V_{LV} = 1.8 \text{ V} \)

Enabling and disabling LVOU'T is controlled by the application circuit with a micro-controller GPIO connected to ENLV.

ENHV is tied to BUCK so that HVOUT is always on.

The micro-controller is supplied by HVOUT, which is enabled when \(V_{BATT} \) and \(V_{BOOST} \) voltages rise above \(V_{CHRDY} \).

The MPP configuration pins SELMPP[1:0] are tied to BUCK (logic HIGH), thus, selecting the ZMPPT configuration to match a 1-kΩ impedance.

No primary battery is connected: PRIM, FB_PRIM_U and FB_PRIM_D pins are tied to GND.
11. Circuit Behavior

11.1. Cold-start Behavior

11.1.1. (Super)capacitor as a Storage Element

The following figure shows the AEM20940 behavior with a capacitor connected to BATT and the following settings:

- $\text{CFG}[2:0] = \text{LHH}$
- $\text{SELMPP}[1:0] = \text{HL}$ (75%)
- $C_{\text{BATT}} = 4.85 \text{ mF}$
- SRC: 1 mA current source with 3 V voltage compliance
- $\text{ENHV} = \text{ENLV} = \text{H}$
- 22 kΩ resistive load on LVOUT
- 2 kΩ resistive load on HVOUT

![Figure 10: Cold start with a capacitor connected to BATT](image-url)

Figure 10: Cold start with a capacitor connected to BATT
11.1.2. Battery as a Storage Element

The following figure shows the AEM20940 behavior with a pre-charged capacitor (acting as a battery) connected to BATT and the following settings:

- $\text{CFG}[2:0] = \text{LHH}$
- $\text{SELMPP}[1:0] = \text{HL (75\%)}$
- $C_{\text{BATT}} = 4.85 \, \text{mF}$
- SRC: 1 mA current source with 3 V voltage compliance
- $\text{ENHV} = \text{ENLV} = \text{H}$
- 22 kΩ resistive load on LVOU
- 2 kΩ resistive load on HVOUT

![Graph showing voltage changes over time with status flags]

Figure 11: Cold start with a battery connected to BATT
11.2. Overcharge Mode Behavior

The following figure shows the AEM20940 behavior in OVERCHARGE MODE with the following settings:

- \(\text{CFG}[2:0] = \text{HHH} \)
- \(\text{SELMPP}[1:0] = \text{HL} \) (75%)
- \(C_{\text{BATT}} = 4.85 \, \text{mF} \)
- \(\text{SRC} \): 1 mA current source with 3 V voltage compliance
- \(\text{ENHV} = \text{ENLV} = \text{H} \)
- 22 k\(\Omega \) resistive load on L\text{VOUT}
- 2 k\(\Omega \) resistive load on H\text{VOUT}

Figure 12: Overcharge mode
11.3. Shutdown Mode Behavior

11.3.1. Without Primary Battery

The following figure shows the AEM20940 behavior in SHUTDOWN MODE with the following settings:

- $\text{CFG}[2:0] = \text{LHL}$
- $\text{SELMPP}[1:0] = \text{HL} (75\%)$
- $C_{\text{BATT}} = 4.85 \text{ mF}$
- SRC: left floating to let the storage element on BATT discharge
- $\text{ENHV} = \text{ENLV} = \text{H}$
- 22 kΩ resistive load on LVOUT
- 22 kΩ resistive load on HVOUT
- PRIM, FB_PRIM_U and FB_PRIM_D connected to GND

![Figure 13: Shutdown mode (without primary battery)](image-url)
11.3.2. With Primary Battery

The following figure shows the AEM20940 behavior in **SHUTDOWN MODE** with the following settings:

- **CFG[2:0] = HHH**
- **SELMPP[1:0] = HL (75%)**
- **C_BATT = 4.85 mF**
- **SRC: left floating to let the storage element on BATT discharge**
- **ENHV = ENLV = H**
- **22 kΩ resistive load on LVOUT**
- **22 kΩ resistive load on HVOUT**
- **PRIM: 3 V voltage source with 1 mA current compliance**
- **R7 = 68 kΩ**
- **R8 = 330 kΩ**

![Figure 14: Switching to primary battery when battery is overdischarged](image)

Figure 14: Switching to primary battery when battery is overdischarged
12. Performance Data

12.1. BOOST Conversion Efficiency for \(L_{\text{BOOST}} = 10 \, \mu\text{H} \)

![Graphs showing efficiency vs. \(V_{\text{SRC}} \) for different values of \(V_{\text{BOOST}} \)](image)

Figure 15: Boost efficiency for \(I_{\text{SRC}} \) at 100µA, 1mA, 10mA and 100mA (\(L_{\text{BOOST}} = 10 \, \mu\text{H} \)).
12.2. BOOST Conversion Efficiency for LBOOST = 22 µH

![Graphs showing efficiency vs. voltage at different boost levels for different source currents.](image)

Figure 16: Boost efficiency for Isrc at 100µA, 1mA and 10mA (LBOOST = 22 µH)
12.3. BUCK Conversion Efficiency

The following graph shows the buck converter efficiency from BATT to BUCK with the AEM20940 quiescent current I_Q subtracted.

![Figure 17: Buck Efficiency ($L_{BUCK} = 10 \, \mu H$)](image)

12.4. Quiescent Current

![Figure 18: Quiescent current with LDOs on and off](image)
12.5. High-voltage LDO Regulation

Figure 19: HVOUT at 3.3 V and 2.5 V

12.6. Low-voltage LDO Regulation

Figure 20: LVOUT at 1.2 V and 1.8 V
12.7. High-voltage LDO Efficiency

The theoretical efficiency of an LDO can be calculated as $\frac{V_{out}}{V_{in}}$ if quiescent current can be neglected with regards to the output current. For the high-voltage LDO, the theoretical efficiency is equal to $\frac{V_{HV}}{V_{BATT}}$.

Figure 21: HVOUT efficiency at 1.8V, 2.5V and 3.3 V
12.8. Low-voltage LDO Efficiency

The theoretical efficiency of an LDO can be calculated as $\frac{V_{LV}}{V_{BUCK}}$. Starting from the battery, the efficiency of the buck converter (η_{buck}) has to be taken into account (see Figure 4).

The efficiency between V_{BATT} and V_{LV} is therefore equal to:

$$\eta_{BUCK} = \frac{V_{LV}}{V_{BUCK}}$$
13. Schematic

Figure 23: Schematic example

Table 10: BOM example for AEM20940 and its required passive components

<table>
<thead>
<tr>
<th>Designator</th>
<th>Description</th>
<th>Quantity</th>
<th>Manufacturer</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>U1</td>
<td>AEM20940</td>
<td>1</td>
<td>e-peas</td>
<td>order at sales@e-peas.com</td>
</tr>
<tr>
<td>LBOOST</td>
<td>Power Inductor 10 µH - 0,90 A - LPS4018</td>
<td>1</td>
<td>Coilcraft</td>
<td>LPS4018-103MR</td>
</tr>
<tr>
<td>LBOOST (alt.)</td>
<td>Power Inductor 10 µH - 0,84 A - 3015</td>
<td>1</td>
<td>Würth</td>
<td>744 040 321 00</td>
</tr>
<tr>
<td>LBOOST (alt.)</td>
<td>Power Inductor 22 µH - 0,65 A - LPS4018</td>
<td>1</td>
<td>Coilcraft</td>
<td>LPS4018-223MR</td>
</tr>
<tr>
<td>CBOOST</td>
<td>Ceramic Cap 22 µF, 10 V, 20%, X5R, 0603</td>
<td>1</td>
<td>Murata</td>
<td>GRM188R61A226ME15D</td>
</tr>
<tr>
<td>LBUCK</td>
<td>Power Inductor 10 µH - 0,25 A - 0603</td>
<td>1</td>
<td>TDK</td>
<td>MLZ1608M100WT</td>
</tr>
<tr>
<td>CBUCK</td>
<td>Ceramic Cap 10 µF, 10 V, 20%, X5R, 0603</td>
<td>1</td>
<td>TDK</td>
<td>C160X5R1A106M080AC</td>
</tr>
<tr>
<td>CSRC</td>
<td>Ceramic Cap 10 µF, 10 V, 20%, X5R, 0603</td>
<td>1</td>
<td>TDK</td>
<td>C160X5R1A106M080AC</td>
</tr>
<tr>
<td>CHV</td>
<td>Ceramic Cap 10 µF, 25 V, 10%, X7S, 0805</td>
<td>1</td>
<td>TDK</td>
<td>C2012X751E106K125AE</td>
</tr>
<tr>
<td>CLV</td>
<td>Ceramic Cap 10 µF, 10 V, 20%, X5R, 0603</td>
<td>1</td>
<td>TDK</td>
<td>C160X5R1A106M080AC</td>
</tr>
<tr>
<td>CBATT</td>
<td>Ceramic Cap 150 µF, 6.3 V, 20%, X5R, 1206</td>
<td>1</td>
<td>TDK</td>
<td>GRM31CR60J157ME11L</td>
</tr>
</tbody>
</table>
14. Layout

14.1. Guidelines

Good layout practices are mandatory in order to obtain good AEM20940 stability, best efficiency and avoid EMI problems. The following list, while not exhaustive, shows the main attention points when routing a PCB with the AEM20940:

- The switching nodes (BUFSRC, SWBOOST, SWBUCK and BUCK) must be kept as short as possible, with minimal track resistance and minimal track capacitance. Low resistance is obtained by keeping track length as short as possible and track width as large as possible between these switching nodes and the AEM20940 pins. Minimal capacitance is obtained by maintaining a large distance between the switching nodes and other signals. We recommend removing the ground plane, the power plane and the bottom layer ground pour under LBOOST and LBUCK footprints, as well as adding distance between BUFSRC/SWBOOST and the top ground pour, as shown in Figure 24.

- The decoupling capacitors (CBOOST, CBUCK, CSRC, CHV, CLV, CBATT) must be placed as close as possible to the AEM20940, with direct connection and minimum track resistance for the corresponding power nodes (BOOST, BUCK, BUFSRC, HVOUT, LVOUT and BATT).

- The GND return path between the decoupling capacitors and the AEM20940 thermal pad, which is the AEM20940 main GND connection, must be as direct and short as possible. This is preferably done on the top layer when possible, otherwise by internal/bottom plane, using low resistance vias to decrease layer-to-layer connection resistance. In Figure 24, this GND return path is done on an internal plane.

- The external DC power connections (SRC, HVOUT, LVOUT and BATT) must be connected to the AEM20940 with low resistance tracks.

- If used, ZMPP must be connected to the AEM20940 with a low resistance track, according to the expected SRC power.

- The BAL pin connection track must be able to handle at least 40 mA.

- The custom mode setting pins SET_OVDIS, SET_CHRDY and SET_OVCH are high impedance analog inputs typically connected to a resistive divider with high resistor values, making those three nodes prone to pickup noise. Thus, it is recommended to keep those as short as possible and as far as possible to noise sources such as DCDC switching nodes.

- The configuration pins and the status pins have minimal layout restrictions.
14.2. Layout Example

Figure 24: Layout example for the AEM20940 and its passive components
15. Package Information

15.1. Plastic Quad Flatpack No-lead (QFN 28-pin 5x5mm)

![Figure 25: QFN 28-pin 5x5mm drawing (all dimension in mm)](image)

15.2. Board Layout (QFN 28-pin 5x5mm)

![Figure 26: Recommended board layout for QFN 28-pin 5x5mm (all dimension in mm)](image)
16. Glossary

AEM
Ambient Energy Manager.

BOM
Bill Of Materials.

C\(_{\text{BATT}}\)
Capacitor connected on the BATT pin (if no storage element connected).

C\(_{\text{BOOST}}\)
Output capacitor of the BOOST converter.

C\(_{\text{BUCK}}\)
Output capacitor of the BUCK converter.

C\(_{\text{HV}}\)
High-voltage LDO regulator decoupling capacitor.

C\(_{\text{LV}}\)
Low-voltage LDO regulator decoupling capacitor.

C\(_{\text{SRC}}\)
BUFSRC pin decoupling capacitor.

GPIO
General Purpose Input / Output.

I\(_{\text{BUCK}}\)
Total load current supplied by the BUCK converter (including the LVOUT current I\(_{\text{LV}}\)).

I\(_{\text{HV}}\)
Load current supplied by the high-voltage LDO regulator.

I\(_{\text{LV}}\)
Load current supplied by the low-voltage LDO regulator.

I\(_{\text{PRIM}}\)
Current from the primary battery.

I\(_{\text{Q}}\)
Quiescent current on BATT when no energy is available on SRC.

I\(_{\text{SRC}}\)
Harvested current from the energy source.

L\(_{\text{BOOST}}\)
BOOST converter inductor.

L\(_{\text{BUCK}}\)
BUCK converter inductor.

LDO
Low Drop-Out.

MPPT
Maximum Power Point Tracking.

PCB
Printed Circuit Board.

P\(_{\text{SRC,CS}}\)
Minimum power available on SRC for the AEM20940 to coldstart.

R\(_{p}\)
Sum of resistors for setting the primary battery minimum voltage. R\(_{p}\) = R7 + R8.

R\(_{ZMPP}\)
Resistor that defines the AEM20940 BOOST converter input resistance when used in ZMPP mode.

T\(_{\text{CRIT}}\)
Time before shutdown once STATUS[1] has been asserted.

TEG
Thermoelectric Generator.

T\(_{\text{MPPT,VOC}}\)
Open-circuit duration for the MPP evaluations.

T\(_{\text{MPPT,PERIOD}}\)
Time between two MPP evaluations.

V\(_{\text{BATT}}\)
Voltage on the BATT pin.

V\(_{\text{BOOST}}\)
Output voltage of the BOOST converter.

V\(_{\text{BUCK}}\)
Output voltage of the BUCK converter.

V\(_{\text{CHRDY}}\)
Charge ready voltage on the BATT pin.

V\(_{\text{FB,PRIM_U}}\)
Feedback for the minimal voltage level on the primary battery.

V\(_{\text{HV}}\)
Output voltage of the high-voltage LDO regulator.

V\(_{\text{LV}}\)
Output voltage of the low-voltage LDO regulator.

V\(_{\text{MPP}}\)
Target regulation voltage on SRC when extracting power.
V_{OC}
Open-circuit voltage of the harvester connected to the SRC pin.

$V_{OVC\,CH}$
Over-charge voltage on the BATT pin.

V_{ODIS}
Over-discharge voltage on the BATT pin.

V_{PRIM}
Voltage on the primary battery.

$V_{PRIM,\,MIN}$
Voltage at which the primary battery is considered fully depleted.

V_{SRC}
Voltage on the SRC pin.

ZMPPT
Maximum Power Point Tracking with constant impedance.
17. Revision History

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>July, 2018</td>
<td>Creation of the document.</td>
</tr>
<tr>
<td>1.1</td>
<td>June, 2019</td>
<td>- Efficiencies measurements updated.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- ESD specifications.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- HVOUT voltage changed from 4.2 V to 4.1 V on Figure 1.</td>
</tr>
<tr>
<td>1.2</td>
<td>November, 2020</td>
<td>- Maximum VSRC value updated to 3.5 V.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- HVOUT voltage changed from 4.1 V to 3.3 V on Figure 1.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- CSIN and CSOUT short-circuited on Figure 8.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- ESD qualification added.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Pin number of SELMPP[0] changed from 9 to 8.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- CFG[2:0] changed from “Custom mode” to “Reserved for future use”.</td>
</tr>
</tbody>
</table>
| | | - Changed the spelling from “cold-start” or “coldstart” to “cold start” throughout the document.
| 1.3 | December, 2023| - Whole document reworked. |
| | | - Term “Balun” replaced by “Storage Element Balancing Circuit”. |
| | | - Term “OVERVOLTAGE mode” replaced by “OVERCHARGE mode”. |
| | | - External component names color changed to orange instead of blue. |
| | | - Link to e-peas website added on first page for evaluation boards information. |
| | | - Table of contents, list of Figures and list of Tables widths changed to page width. |
| | | - Aesthetic changes on Figures 1, 3, 4, 5, 8, 9, 23, 24, 25 and 26 and on Table 7. |
| | | - “See page...” column removed from Table 1. |
| | | - Added all AEM pins in the Absolute Maximum Ratings table. |
| | | - Added “Pin Configuration and Functions” section containing the pinout diagram and description.|
| | | - Table 5: |
| | | - Footnotes added. |
| | | - VMPP minimum and maximum values added. |
| | | - ISRC value added for LBOOST value of 22 µH. |
| | | - Different minimum values for VBATT depending on used storage element removed. |
| | | - Added IBUCK, IQ, TMPPT.VOC and TMPPT.PERIOD. |
| | | - Table 6: |
| | | - CSRC maximum value changed from 150 µF to 22 µF. |
| | | - CBOOST and CBUCK maximum values removed. |
| | | - ENHV minimum and maximum values removed. |
| | | - ENLV minimum value replaced by VBUCK. |
| | | - Removed LBOOST maximum value. |
| | | - Specified CBATT minimum value if LDOs enabled or disabled. |
| | | - Condition to go from SHUTDOWN mode to NORMAL mode corrected to “If VBATT > VOVDIS” in Figure 2 and Section 8.2.5. |
| | | - VSRC and PSRC values changed from 380 mV and 100 µW to 60 mV and 150 µW on Figure 5. |
| | | - Maximum Power Point Tracking section rephrased and MPP evaluation behavior figure added. |
| | | - Added how to use BUCK to supply an application, and BUCK converter performances. |
| | | - Second CBATT value added of 22 µF when storage element not connected and LDOs not used (Section 9.8). |
| | | - Second LBOOST recommended value of 22 µH added in Section 9.9 and Table 10. |
| | | - Replaced LBOOST LPS4012-103MR by LPS4018-103MR in BOM example table. |
| | | - New section created to place the circuit behavior figures. |
| | | - Changed the way of displaying the settings used for the circuit behavior figures. |
| | | - Added layout guidelines section and glossary section. |
| | | - Replaced 0 by L for logic LOW and 1 by H for logic HIGH in tables and texts. |

Table 11: Revision history