Description
The AEM10941 evaluation board is a printed circuit board (PCB) featuring all the needed components to operate the AEM10941 integrated circuit (IC). Please refer to the datasheet for all the useful details about the AEM10941 (Document DS_AEM10941).

The AEM10941 evaluation board allows users to test the e-peas IC and analyze its performances in a laboratory-like setting. It allows easy connections to the energy harvester, the storage element and the low-voltage and high-voltage loads. It also provides all the configuration access to set the device in any one of the modes described in the datasheet. The control and status signals are available on standard pin headers, allowing users to wire for any usage scenario and evaluate the relevant performance.

The AEM10941 evaluation board is a plug and play, intuitive and efficient tool for making the appropriate decisions (component selection, operating modes) for the design of a highly efficient solar energy powered subsystem in your target application.

Applications
- PV cell harvesting
- Industrial monitoring
- Geolocation
- Home automation
- E-health monitoring
- Wireless sensor nodes

Features
- Four two-way screw terminals
 - Source of energy (PV cell)
 - Low-voltage load
 - High-voltage load
 - Primary energy storage element
- One three-way screw terminal
 - Energy storage element (battery or (super)capacitor)
- One zero insertion force (ZIF) connector
 - Alternative connection for the source
- One 2-pin ”Shrouded Header”
 - Alternative connection for the storage element
- Eight 3-pin headers
 - Maximum power point (MPP) configuration
 - Low drop-out regulators (LDOs) enabling
 - Energy storage elements and LDOs configuration
 - Dual-cell supercapacitor configuration
- Three 2-pin headers
 - Primary battery configuration
 - Cold-start configuration
- Provision for ten resistors
 - Custom mode configuration
 - Cold start configuration
 - Primary battery configuration
- Three 1-pin headers
 - Access to status pins

Appearance

Device information

<table>
<thead>
<tr>
<th>Part number</th>
<th>Dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2AAEM10941C0022</td>
<td>76 mm x 50 mm</td>
</tr>
</tbody>
</table>
Contents

1 Connections Diagram
 1.1 Signals description 4

2 General Considerations
 2.1 Safety information 5
 2.2 Basic configurations 5
 2.3 Advanced configurations 6

3 Functional Tests
 3.1 Start-up 7
 3.2 Shutdown 8
 3.3 Switching on primary battery 8
 3.4 Cold start 8
 3.5 Dual-cell supercapacitor balancing circuit 9

4 Performance Tests
 4.1 LDOs 10
 4.2 BOOST efficiency 10
 4.3 Custom mode configuration 11

5 PV cell characterization 12

List of Figures

1 Connection diagram 3
2 STATUS[0] and HLDO evolution with BATT 7
3 SRC and STATUS[2] while energy is extracted from SRC (BATT under Vovch) 7
4 LDOs disabled around 600 ms after BATT reaches Vovdis 8
5 Switching from SRC to the primary battery 8
6 AEM10941 behaviour during cold start 9
7 HVOUT at 2.5V 10
8 Boost efficiency for ISRC = 1 mA 11
9 PV cell first order model 12
10 Typical I-V curve of a PV cell for high and low illumination level 12
11 Typical power-V curve of a PV cell for high and low illumination level 12

List of Tables

1 Pin description 4
2 Usage of CFG[2:0] 5
3 LDOs enabling 5
4 Usage of SELMPP[1:0] 5
1 Connections Diagram

1 Connections Diagram

Figure 1: Connection diagram

Warning
- Please refer to Section 2.1 before connecting the board
- A 150 µF capacitor CBATT is already soldered on BATT

Storage element
- Mandatory connection
- BAL (dotted line) optional
- If BAL pin is used, use a jumper to connect BAL to ToCN or to GND if not used
- See Section 2.3.4

MPP configuration
- Mandatory connection
- See Table 4

Battery & LDOs configuration
- Mandatory connection
- See Table 2

Cold-start configuration
- Mandatory connection
- Connect a jumper to fB_COLD2 pins or use the resistors
- See Section 2.3.3

Custom mode configuration
- Leave floating if not used
- See Section 2.3.1

LDOs enabling
- Mandatory connection
- See Table 3

Primary battery
- Mandatory connection
- Connect a jumper to each nBACPRIM2 pins or connect the battery
- See Section 2.3.2

Low-voltage LDO output
- Leave floating if not used

High-voltage LDO output
- Leave floating if not used

Source element
- Leave floating if not used

High voltage load

Low voltage load

PV Cell

Copyright © 2018 e-Peas SA
1.1 Signals description

<table>
<thead>
<tr>
<th>NAME</th>
<th>FUNCTION</th>
<th>CONNECTION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Power signals</td>
<td></td>
</tr>
<tr>
<td>LOWOUT</td>
<td>Output of the low-voltage LDO regulator.</td>
<td>Connect a load.</td>
</tr>
<tr>
<td>HVOUT</td>
<td>Output of the high-voltage LDO regulator.</td>
<td>Connect a load.</td>
</tr>
<tr>
<td>BAL</td>
<td>Connection to mid-point of a dual-cell supercapacitor.</td>
<td>Connect mid-point and jumper BAL to "ToCN". Use a jumper to connect "BAL" to "GND".</td>
</tr>
<tr>
<td>BATT</td>
<td>Connection to the energy storage element.</td>
<td>Connect storage element in addition to CBATT (150 µF). Do not remove CBATT.</td>
</tr>
<tr>
<td>PRIM</td>
<td>Connection to the primary battery.</td>
<td>Connect primary battery. Connect a jumper to each NoPRIM 2-pins.</td>
</tr>
<tr>
<td>SRC</td>
<td>Connection to the harvested energy source.</td>
<td>Connect the source element. Leave floating.</td>
</tr>
<tr>
<td></td>
<td>Debug signals</td>
<td></td>
</tr>
<tr>
<td>VBOOST</td>
<td>Output of the boost converter.</td>
<td></td>
</tr>
<tr>
<td>VBUCK</td>
<td>Output of the buck converter.</td>
<td></td>
</tr>
<tr>
<td>BUFSRC</td>
<td>Connection to an external capacitor buffering the boost converter input.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Configuration signals</td>
<td></td>
</tr>
<tr>
<td>CFG[2]</td>
<td>Configuration of the threshold voltages for the energy storage element and the output voltage of the LDOs.</td>
<td>Connect jumper (see Table 2). Cannot be left floating (see Table 2).</td>
</tr>
<tr>
<td>CFG[1]</td>
<td>Configuration of the LDOs.</td>
<td></td>
</tr>
<tr>
<td>CFG[0]</td>
<td>Configuration of the MPP ratio.</td>
<td>Connect jumper (see Table 4). Cannot be left floating (see Table 4).</td>
</tr>
<tr>
<td>SELMPP[0]</td>
<td>Configuration of the MPP ratio.</td>
<td></td>
</tr>
<tr>
<td>FB_PRIM</td>
<td>Configuration of the primary battery.</td>
<td>Use resistors R7-R8 (see Section 2.3.2). Connect a jumper to each NoPRIM 2-pins.</td>
</tr>
<tr>
<td>FB_HV</td>
<td>Configuration of the high-voltage LDO in the custom mode.</td>
<td>Use resistors R5-R6 (see Section 2.3.1). Leave floating.</td>
</tr>
<tr>
<td>FB_COLD</td>
<td>Configuration of the cold start.</td>
<td>Use resistors R9-R10 (see Section 2.3.3). Connect a jumper to FB_COLD 2-pins if not used.</td>
</tr>
<tr>
<td></td>
<td>Control signals</td>
<td></td>
</tr>
<tr>
<td>ENHV</td>
<td>Enabling pin for the high-voltage LDO.</td>
<td>Connect jumper (see Table 3). Cannot be left floating (see Table 3).</td>
</tr>
<tr>
<td>ENLV</td>
<td>Enabling pin for the low-voltage LDO.</td>
<td>Connect jumper (see Table 3). Cannot be left floating (see Table 3).</td>
</tr>
<tr>
<td></td>
<td>Status signals</td>
<td></td>
</tr>
<tr>
<td>STATUS[2]</td>
<td>Logic output. Asserted when the AEM performs the MPP evaluation.</td>
<td></td>
</tr>
<tr>
<td>STATUS[1]</td>
<td>Logic output. Asserted if the battery voltage falls under Vovdis or if the AEM is taking energy from the primary battery.</td>
<td></td>
</tr>
<tr>
<td>STATUS[0]</td>
<td>Logic output. Asserted when the LDOs can be enabled.</td>
<td></td>
</tr>
</tbody>
</table>

Table 1: Pin description
2 General Considerations

2.1 Safety information

Always connect the elements in the following order:

1. Reset the board - see “How to reset the AEM10941 evaluation board” on page 7.
2. Completely configure the PCB (jumpers/resistors);
 - MPP configuration (SELMPP[0], SELMPP[1]) - see Table 4,
 - Battery and LDOs configuration (CFG[0], CFG[1], CFG[2] and, if needed, R1-R2-R3-R4-R5-R6) - see Table 2,
 - Primary battery configuration (NoPRIM or R7-R8) - see Section 2.3.2,
 - LDOs enabling (ENHV and ENLV) - see Table 3,
 - Cold-start configuration (FB_COLD or R9-R10) - see Section 2.3.3,
 - Balun circuit connection (BAL) - see Section 2.3.4.
3. Connect the storage elements on BATT and optionally the primary battery on PRIM.
4. Connect the high and/or low voltage loads on HVOUT/LVOUT (optional).
5. Connect the source element on SRC.

To avoid damage to the board, users are urged to follow this procedure.

2.2 Basic configurations

The MPP configuration is not available on the AEM10941 evaluation board. The MPP is by default configured to 50% of V_{oc} as this ratio optimize the proposed rectifier efficiency.

<table>
<thead>
<tr>
<th>Configuration pins</th>
<th>Storage element threshold voltages</th>
<th>LDOs output voltages</th>
<th>Typical use</th>
</tr>
</thead>
<tbody>
<tr>
<td>H H H</td>
<td>4.12 V 3.67 V 3.60 V</td>
<td>3.3 V 1.8 V</td>
<td>Li-ion battery</td>
</tr>
<tr>
<td>H H L</td>
<td>4.12 V 4.04 V 3.60 V</td>
<td>3.3 V 1.8 V</td>
<td>Solid state battery</td>
</tr>
<tr>
<td>H L H</td>
<td>4.12 V 3.67 V 3.01 V</td>
<td>2.5 V 1.8 V</td>
<td>Li-ion/NiMH battery</td>
</tr>
<tr>
<td>H L L</td>
<td>2.70 V 2.30 V 2.20 V</td>
<td>1.8 V 1.2 V</td>
<td>Single-cell (super) capacitor</td>
</tr>
<tr>
<td>L H H</td>
<td>4.50 V 3.67 V 2.80 V</td>
<td>2.5 V 1.8 V</td>
<td>Dual-cell supercapacitor</td>
</tr>
<tr>
<td>L H L</td>
<td>4.50 V 3.92 V 3.60 V</td>
<td>3.3 V 1.8 V</td>
<td>Dual-cell supercapacitor</td>
</tr>
<tr>
<td>L L H</td>
<td>3.63 V 3.10 V 2.80 V</td>
<td>2.5 V 1.8 V</td>
<td>LiFePO4 battery</td>
</tr>
<tr>
<td>L L L</td>
<td>Custom mode - see Section 2.3.1</td>
<td>1.8 V</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ENLV ENHV</th>
<th>LV output</th>
<th>HV output</th>
<th>SELMPP[1] SELMPP[0]</th>
<th>Vmpp/Voc</th>
</tr>
</thead>
<tbody>
<tr>
<td>H H</td>
<td>Enabled</td>
<td>Enabled</td>
<td>L L</td>
<td>70%</td>
</tr>
<tr>
<td>H L</td>
<td>Enabled</td>
<td>Disabled</td>
<td>L H</td>
<td>75%</td>
</tr>
<tr>
<td>L H</td>
<td>Disabled</td>
<td>Enabled</td>
<td>H L</td>
<td>85%</td>
</tr>
<tr>
<td>L L</td>
<td>Disabled</td>
<td>Disabled</td>
<td>H H</td>
<td>90%</td>
</tr>
</tbody>
</table>

Table 2: Usage of CFG[2:0]

Table 3: LDOs enabling

Table 4: Usage of SELMPP[1:0]
2.3 Advanced configurations

A complete description of the system constraints and configurations is available in Section 8 “System configuration” of the AEM10941 datasheet. A reminder on how to compute the configuration resistors value is provided below. Calculation can be made with the help of the spreadsheet found at the e-peas website.

2.3.1 Custom mode

In addition to the pre-defined protection levels, the custom mode allows users to define their own levels via resistors R1 to R4 and to tune the output of the high voltage LDO via resistors R5-R6.

By defining \(RT = R1+R2+R3+R4 \) (\(1 \, \text{M}\Omega \leq RT \leq 100 \, \text{M}\Omega \)):

- \(R1 = RT \left(\frac{1 \, \text{V}}{V_{ovch}} \right) \)
- \(R2 = RT \left(\frac{1 \, \text{V}}{V_{chrdy}} - 1 \frac{1 \, \text{V}}{V_{ovch}} \right) \)
- \(R3 = RT \left(\frac{1 \, \text{V}}{V_{ovdis}} - 1 \frac{1 \, \text{V}}{V_{chrdy}} \right) \)
- \(R4 = RT \left(1 - \frac{1 \, \text{V}}{V_{ovdis}} \right) \)

By defining \(RV = R5+R6 \) (\(1 \, \text{M}\Omega \leq RV \leq 40 \, \text{M}\Omega \)):

- \(R5 = RV \left(\frac{1 \, \text{V}}{V_{hv}} \right) \)
- \(R6 = RV \left(1 - \frac{1 \, \text{V}}{V_{hv}} \right) \)

Make sure the protection levels satisfy the following conditions:
- \(V_{chrdy} + 0.05 \, \text{V} \leq V_{ovch} \leq 4.5 \, \text{V} \)
- \(V_{ovdis} + 0.05 \, \text{V} \leq V_{chrdy} \leq V_{ovch} - 0.05 \, \text{V} \)
- \(2.2 \, \text{V} \leq V_{ovdis} \)
- \(V_{hv} \leq V_{ovdis} \leq 0.3 \, \text{V} \)

If unused, leave the resistor footprints (R1 to R6) empty.

2.3.2 Primary battery configuration

As to the main storage element, the primary battery protection levels have to be defined. To do so, use resistors R7-R8.

By defining \(RP = R7+R8 \) (\(100 \, \text{k}\Omega \leq RP \leq 500 \, \text{k}\Omega \)):

- \(R7 = \left(\frac{V_{prim}}{4} \right) \cdot RP / 2.2 \, \text{V} \)
- \(R8 = RP - R7 \)

If unused, connect a jumper to each “NoPRIM” 2-pins.

2.3.3 Cold-start configuration

The cold-start voltage (i.e. the voltage needed at startup to turn on the AEM10941) is by default at its minimum value of 380 mV. This voltage can be tuned by the use of resistors R9-R10.

By defining \(RC = R9+R10 \) (\(100 \, \text{k}\Omega \leq RC \leq 10 \, \text{M}\Omega \)):

- \(R9 = \left(\frac{0.38 \, \text{V}}{V_{cs}} \right) \cdot RC \)
- \(R10 = RC - R9 \)

If unused, connect a jumper to “FB_COLD” 2-pins.

2.3.4 Balun circuit configuration

When using a dual-cell supercapacitor (that does not already include a balancing circuit), enable the balun circuit configuration to ensure equal voltage on both cells. To do so:

- Connect the node between the two supercapacitor cells to BAL (on BAT connector)
- Use a jumper to connect "BAL" to "ToCN" 2-pins

If unused, use a jumper to connect "BAL" to "GND".
3 Functional Tests

This section presents a few simple tests that allow the user to understand the functional behavior of the AEM10941. To avoid damaging the board, follow the procedure found in Section 2.1 "Safety information". If a test has to be restarted, make sure to properly reset the system to obtain reproducible results.

The following functional tests were made using the following setup:
- Storage element: capacitor (4.7 mF + CBATT)
- Load: 10 kΩ on HVOUT, LVOUT floating
- SRC: current source (1 mA or 100 μA) with voltage compliance (4 V)

Feel free to adapt the setup to match your system as long as you respect the input and cold-start constraints (see Section 1 "Introduction" of AEM10941 datasheet).

3.1 Start-up

The following example allows users to observe the behavior of the AEM10941 in the wake-up mode.

Setup

1. Place the probes on the nodes to be observed.
2. Referring to Figure 1, follow steps 1 to 5 explained in Section 2.1.

Observations and measurements
- BATT: Voltage rises as the power provided by the source is transferred to the storage element (see Figure 2).
- SRC: Regulated at V_{mpp}, which is a voltage equal to the open-circuit voltage (V_{oc}) times the MPP ratio defined in Table 4. V_{src} equals V_{oc} during MPP evaluation (see Figure 3). Note that V_{src} must be higher than 380 mV to coldstart.
- HLDO/LLDO: Regulated when voltage on BATT first rises above V_{chrdy} (see Figure 2).
- STATUS[0]: Asserted when the LDOs are ready to be enabled (refer to Section 7.2 "Normal mode" of the AEM10941 datasheet) (see Figure 2).
- STATUS[2]: Asserted each time the AEM10941 performs a MPP evaluation (see Figure 3).
3.2 Shutdown
This test allows users to observe the behavior of the AEM10941 when the system is running out of energy.

Setup
1. Place the probes on the nodes to be observed.
2. Referring to Figure 1, follow steps 1 to 5 explained in Section 2.1. Configure the board in the desired state and start the system (see Section 3.1). Do not use a primary battery.
3. Let the system reach a steady state (i.e. voltage on BATT between Vchrdy and Vovch and STATUS[0] asserted).
4. Remove your source element and let the system discharge through quiescent current and HVOUT/LVOUT load(s).

Observations and measurements
- **BATT**: Voltage decreases as the system consumes the power accumulated in the storage element. The voltage remains stable after crossing Vovdis (see Figure 4).
- **STATUS[0]**: De-asserted when the LDOs are no longer available as the storage element is running out of energy. This happens 600 ms after STATUS[1] assertion (see Figure 4).
- **STATUS[1]**: Asserted for 600 ms when the storage element voltage (BATT) falls below Vovdis (see Figure 4).

![Figure 4: LDOs disabled around 600 ms after BATT reaches Vovdis](image)

3.3 Switching on primary battery
This example allows users to observe switching from the main storage element to the primary battery when the system is running out of energy.

Setup
1. Place the probes on the nodes to be observed.
2. Referring to Figure 1, follow steps 1 to 5 explained in Section 2.1. Configure the board in the desired state and start the system (see Section 3.1). Connect a primary battery (example: 3.1V coin cell with protection level at 2.4V, R7 = 68kΩ and R8 = 180kΩ).
3. Let the system reach a steady state (i.e. voltage on BATT between Vchrdy and Vovch and STATUS[0] asserted).
4. Remove your source element and let the system discharge through quiescent current and HVOUT/LVOUT load(s).

Observations and measurements
- **BATT**: Voltage decreases as the system consumes the power accumulated in the storage element. The voltage reaches Vovdis and then rises again to Vchrdy as it is recharged from the primary battery (see Figure 5).
- **STATUS[0]**: Never de-asserted as the LDOs are still functional (see Figure 5).
- **HLDO**: Stable and not affected by switching on the primary battery (see Figure 5).

![Figure 5: Switching from SRC to the primary battery](image)

3.4 Cold start
The following test allows users to observe the minimum voltage required to coldstart the AEM10941. Be careful to avoid probing any unnecessary node to avoid leakage current induced by the probe. Make sure to properly reset the board to observe the cold-start behavior.

Setup
1. Place the probes on the nodes to be observed.
2. Referring Figure 1, follow steps 1 and 2 explained in Section 2.1. Configure the board in the desired state. Connect the jumper FB_COLD. Do not plug any storage element in addition to CBATT.
3. **SRC**: Connect your source element.
Observation and measurements

- **SRC**: Equal to the cold-start voltage during the cold-start phase. Regulated at the selected MPPT percentage of V_{oc} when cold start is over (see Figure 6). Be careful that the cold-start phase time will shorten with the input power. Limit it to ease the observation.

- **BATT**: Starts to charge when the cold-start phase is over (see Figure 6).

![Graph showing SRC and BATT behavior during cold start]

Figure 6: AEM10941 behavior during cold start

3.5 Dual-cell supercapacitor balancing circuit

This test allows users to observe the balancing circuit behavior that maintains the voltage on BAL equilibrated.

Setup

1. Following steps 1 and 2 explained in Section 2.1 and referring to Figure 1, configure the board in the desired state. Plug the jumper linking "BAL" to "ToCN".

2. **BATT**: Plug capacitor C_1 between the positive (+) and the BAL pins and a capacitor C_2 between BAL and the negative (-) pins.

 Select $C_1 \neq C_2$ such that:

 - $C_1 \& C_2 > 1 \text{ mF}$
 - \[
 \frac{C_2 \times V_{\text{chrdy}}}{C_1} \geq 0.9 \text{ V}
 \]

3. **SRC**: Plug your source element to start the flow of power to the system.

Measurements

- **BAL**: Equal to half the voltage on **BATT**.

Warning regarding measurements:
Any item connected to the PCB (load, probe, storage device, etc.) involves a leakage current. This can negatively impact the measurements. Whenever possible, disconnect unused items to limit this effect.

4 Performance Tests

This section presents the tests to reproduce the performance graphs found in the AEM10941 datasheet and to understand the functionalities of the AEM10941. To be able to reproduce those tests, you will need the following:

- 1 voltage source
- 2 source measure units (SMUs)
- 1 oscilloscope

To avoid damaging the board, follow the procedure found in Section 2.1 "Safety information". If a test has to be restarted, make sure to properly reset the system to obtain reproducible results (see "How to reset the AEM10941 evaluation board" on page 7).

4.1 LDOs

The following example instructs users on how to measure the output voltage stability of the LDOs (Figure 16 and Figure 17 of AEM10941 datasheet).

Setup

1. Referring to Figure 1, follow steps 1 and 2 explained in Section 2.1. Configure the board in the desired state and plug your storage element(s).

2. **VBOOST**: Connect SMU1. Configure it to source voltage with a current compliance of 200 mA.

3. **HVOUT / LVOUT**: Connect SMU2 to the LDO you want to measure. Configure it to sink current with a voltage compliance of 5 V for HVOUT or 2.5 V for LVOUT.

Manipulations

1. Impose a voltage between **Vovch** and 5 V on SMU1 to force the AEM to start.

2. Sweep voltage on SMU1 from **Vovdis** + 50 mV to 4.5 V.

3. Repeat with different current levels on SMU2 (from 10 µA to 80 mA for HVOUT and from 10 µA to 20 mA for LVOUT).

Measurements

- **HVOUT/LVOUT**: Measure the voltage.

4.2 BOOST efficiency

This test allows users to reproduce the efficiency graphs of the boost converter (Figure 14 of AEM10941 datasheet).

Setup

1. Following steps 1 and 2 explained in Section 2.1 and referring to Figure 1, configure the board in the desired state.

2. **VBUCK**: Connect a 2.3 V voltage source to prevent **VBUCK** to sink from **VBOOST**.

3. **SRC**: Connect SMU1. Configure it to source current with a voltage compliance of 0 V.

4. **VBOOST**: Connect SMU2. Configure it to source voltage with a current compliance of 200 mA.

5. **STATUS[2]**: Connect to one of the SMUs to detect falling edge.

Manipulations

1. Impose a voltage between **Vchrdy** and 5 V on SMU2 to force the AEM to start. When done, impose a voltage between **Vovdis** + 50 mV and **Vovch**.

2. Sweep voltage compliance on SMU1 from 50 mV to 5 V.

3. Repeat with different current levels on SMU1 (from 100 µA to 100 mA) and with different voltage levels on SMU2 (from **Vovdis** + 50 mV to **Vovch**).

Measurements

- **STATUS[2]**: Do not make any measurements while high (boost converter is not active during MPP calculation).
- **SRC**: Measure the current and the voltage.
- **VBOOST**: Measure the current and the voltage. Repeat the measurement a copious number of times to be sure to capture the current peaks. Figure 8 has been obtained by averaging over 100 measurements configured with a 100 ms integration time.

- Deduce input and output power \(P = U \times I \) and efficiency \(\eta = \frac{P_{\text{out}}}{P_{\text{in}}} \).

![Figure 8: Boost efficiency for ISRC = 1 mA](image-url)

4.3 Custom mode configuration

This test allows users to measure the custom protection levels of the storage element set by resistors R1 to R6.

Setup

1. Referring to Figure 1, follow steps 1 and 2 explained in Section 2.1. Connect CFG[2:0] = LLL to select custom mode and choose R1 to R6 to configure the battery protection levels and HVOUT output voltage.

2. Place the probes on the nodes to be observed.

3. **SRC**: Connect your source element to start the flow of power to the system.

Manipulations

1. Remove the source element after the voltage on BATT has reached steady state (between Vchrdy and Vovch).

Measurements

Measure the following nodes to ensure the correct behaviour of the AEM10941 with respect to the custom configuration:

- **STATUS[0]**: Asserted when the LDOs can be enabled (i.e. when BATT first rises above Vchrdy).

- **STATUS[1]**: Asserted when BATT falls below Vovdis.

- **BATT**: Rise up and oscillate around Vovch as long as the source element has not been removed.

- **HVOUT**: Equal to the value set by R5-R6.
5 PV cell characterization

A photovoltaic cell can be modeled at first approximation by a light-controlled current source in parallel with a diode as illustrated in Figure 9. This allows to model the two main characteristics of a PV cell: open-circuit voltage (V_{oc}) and short-circuit current (I_{sc}).

The open-circuit voltage corresponds to the forward voltage of the diode at no load while the short-circuit current is the current delivered by the current source (i.e. when shorting the + and - terminals).

Typical current vs voltage graph of a PV cell for different illumination levels can be observed in Figure 10. Knowing that $P = I \times V$, the associated power vs voltage curves can be drawn as shown in Figure 11. For a given technology, the maximum extracted power is achieved at a voltage corresponding to a given ratio of the open-circuit voltage (between 70% and 90%). This ratio is, in first approximation, independent of the illumination level: as can be seen in Figure 11, $\frac{V_{oc}}{V_{mpp}} \approx \frac{V_{mpp}}{V_{oc}}$.

As presented in Table 4, the MPP configuration of the AEM10941 allows you to select the voltage ratio that optimizes the power extraction according to the characteristics of your PV cell.

As can be seen in Figure 11, the power significantly decreases with the voltage beyond the optimum V_{mpp}. It is then recommended to configure the V_{mpp}/V_{oc} ratio to be slightly lower than the theoretical optimum and therefore avoid a significant drop of performance.