Evaluation board for AEM30940 - RF harvesting

Description

The AEM30940 evaluation board is a printed circuit board (PCB) featuring all the needed components to operate the AEM30940 integrated circuit (IC). Please refer to the datasheet for all the useful details about the AEM30940 (Document DS_AEM30940).

The AEM30940 evaluation board allows users to test the e-peas IC and analyze its performances in a laboratory-like setting. It includes two matching networks and rectifiers for a 50Ω single-ended antenna. It allows easy connections to the RF energy harvester, the storage element and the low-voltage and high-voltage loads. It also provides all the configuration access to set the device in configuration modes described in the datasheet. The MPPT ratio is fixed at 50% to optimize the rectifier efficiency. The control and status signals are available on standard pin headers, allowing users to wire for any usage scenario and evaluate the relevant performance.

The AEM30940 evaluation board is a plug and play, intuitive and efficient tool for making the appropriate decisions (component selection, operating modes) for the design of a highly efficient radio frequency powered subsystem in your target application. There are two designs of the AEM30940 evaluation board for RF harvesting. One is for the 868 MHz band and another for the 915 MHz band.

• RF harvesting
• Industrial monitoring
• Indoor geolocation
• Home automation
• E-health monitoring
• Wireless sensor nodes

Features

Three two-way screw terminals
- Low-voltage load
- High-voltage load
- Primary energy storage element

One three-way screw terminal
- Energy storage element (battery or (super)capacitor)

Two male 50Ω SMA connectors
- Connections to the RF source
- Associated matching networks and rectifiers

One 2-pin “Shrouded Header”
- Alternative connection for the storage element

Nine 3-pin headers
- Low drop-out regulators (LDOs) enabling
- Energy storage elements and LDOs configuration
- Dual-cell supercapacitor configuration
- Connection from rectifier to AEM30940

Two 2-pin headers
- Primary battery configuration

Provision for nine resistors
- Custom mode configuration
- Primary battery configuration
- ZMPP configuration

Three 1-pin headers
- Access to status pins

Device information

<table>
<thead>
<tr>
<th>Part number</th>
<th>Dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2AAEM30940C0XXX</td>
<td>76 mm x 50 mm</td>
</tr>
<tr>
<td>XXX: 211</td>
<td>868 MHz</td>
</tr>
<tr>
<td>XXX: 310</td>
<td>915 MHz</td>
</tr>
</tbody>
</table>
Contents

1 Connections Diagram
 1.1 Signals description .. 4

2 General Considerations
 2.1 Safety information ... 5
 2.2 Basic configurations 5
 2.3 Advanced configurations 6

3 Functional Tests
 3.1 Start-up .. 7
 3.2 Shutdown .. 7
 3.3 Switching on primary battery 8
 3.4 Cold start ... 8
 3.5 Dual-cell supercapacitor balancing circuit 9

List of Figures

1 Connection diagram .. 3
2 STATUS[0] and HLDO evolution with BATT 7
3 SRC and STATUS[2] while energy is extracted from SRC (BATT under Vovch) 7
4 LDOs disabled around 600 ms after BATT reaches Vovdis ... 8
5 Switching from SRC to the primary battery 8
6 AEM30940 behaviour during cold start 9

List of Tables

1 Pin description ... 4
2 Usage of CFG[2:0] ... 5
3 LDOs enabling .. 5
4 Usage of SELMPP[1:0] ... 5
Figure 1: Connection diagram

Connections Diagram

Storage element
- Mandatory connection
- Leave floating if not used

Primary battery
- Mandatory connection
- Connect a jumper to each «NoPRIM» 2-pins or connect the battery
- See Section 2.3.3

Battery & LDOs configuration
- Mandatory connection
- See Table 2

LDOs enabling
- Mandatory connection
- See Table 3

Warning
- Please refer to Section 2.1 before doing any connection

- A 150 µF capacitor CBATT is already soldered on BATT

Custom mode configuration
- Leave floating if not used
- See Section 2.3.1

Source element low power
- Leave floating if not used

Source element high power
- Leave floating if not used

High-voltage LDO output
- Leave floating if not used

Low-voltage LDO output
- Leave floating if not used

High voltage load
- Leave floating if not used

Low voltage load
- Leave floating if not used

MPPT configuration
- Mandatory connection
- See Section 2.3.5

Source element selection
- Select the high or low power RF matching network and receiver
1.1 Signals description

<table>
<thead>
<tr>
<th>NAME</th>
<th>FUNCTION</th>
<th>CONNECTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power signals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LVOUT</td>
<td>Output of the low-voltage LDO regulator.</td>
<td>If used: Connect a load.</td>
</tr>
<tr>
<td>HVOUT</td>
<td>Output of the high-voltage LDO regulator.</td>
<td>If used: Connect mid-point and jumper BAL to "ToCN".</td>
</tr>
<tr>
<td>BAL</td>
<td>Connection to mid-point of a dual-cell supercapacitor.</td>
<td>If used: Connect storage element in addition to CBATT (150 uF).</td>
</tr>
<tr>
<td>BATT</td>
<td>Connection to the energy storage element.</td>
<td>If used: Connect primary battery.</td>
</tr>
<tr>
<td>PRIM</td>
<td>Connection to the primary battery.</td>
<td></td>
</tr>
<tr>
<td>Debug signals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VBOOST</td>
<td>Output of the boost converter.</td>
<td></td>
</tr>
<tr>
<td>VBUCK</td>
<td>Output of the buck converter.</td>
<td></td>
</tr>
<tr>
<td>SRC</td>
<td>Output of the rectifier.</td>
<td></td>
</tr>
<tr>
<td>Configuration signals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CFG[2]</td>
<td>Configuration of the threshold voltages for the energy storage element</td>
<td>Connect jumper (see Table 2).</td>
</tr>
<tr>
<td>CFG[1]</td>
<td>and the output voltage of the LDOs.</td>
<td></td>
</tr>
<tr>
<td>CFG[0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SRC_CHOICE</td>
<td>Selection of the high or low power matching network and rectifier.</td>
<td>Connect jumper SRC_CHOICE to high or low.</td>
</tr>
<tr>
<td>FBPRIM</td>
<td>Configuration of the primary battery.</td>
<td>Use resistors R7-R8 (see Section 2.3.3).</td>
</tr>
<tr>
<td>FHV</td>
<td>Configuration of the high-voltage LDO in the custom mode.</td>
<td>Use resistors R5-R6 (see Section 2.3.1).</td>
</tr>
<tr>
<td>RZMPP</td>
<td>Configuration of the constant impedance MPP.</td>
<td>Use resistor RZMPP.</td>
</tr>
<tr>
<td>Control signals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENHV</td>
<td>Enabling pin for the high-voltage LDO.</td>
<td>Connect jumper (see Table 3).</td>
</tr>
<tr>
<td>ENLV</td>
<td>Enabling pin for the low-voltage LDO.</td>
<td>Connect jumper (see Table 3).</td>
</tr>
<tr>
<td>Status signals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STATUS[2]</td>
<td>Logic output. Asserted when the AEM performs the MPP evaluation.</td>
<td></td>
</tr>
<tr>
<td>STATUS[1]</td>
<td>Logic output. Asserted if the battery voltage falls under Vovdis or if the AEM is taking energy from the primary battery.</td>
<td></td>
</tr>
<tr>
<td>STATUS[0]</td>
<td>Logic output. Asserted when the LDOs can be enabled.</td>
<td></td>
</tr>
</tbody>
</table>

Table 1: Pin description
2 General Considerations

2.1 Safety information

Always connect the elements in the following order:

1. Reset the board - see “How to reset the AEM30940 evaluation board” on page 7.
2. Completely configure the PCB (jumpers/resistors);
 - Battery and LDOs configuration (CFG[0], CFG[1], CFG[2] and, if needed, R1-R2-R3-R4-R5-R6) - see Table 2,
 - Primary battery configuration (NoPRIM or R7-R8) - see Section 2.3.3,
 - LDOs enabling (ENHV and ENLV) - see Table 3,
 - Balun circuit connection (BAL) - see Section 2.3.4.
3. Connect the storage elements on BAT and optionally the primary battery on PRIM.
4. Connect the high and/or low voltage loads on HVOUT/LVOUT (optional).
5. Connect the source.

To avoid damage to the board, users are urged to follow this procedure.

2.2 Basic configurations

The MPP configuration is not available on the AEM30940 evaluation board. The MPP is by default configured to 50% of Voc as this ratio optimize the proposed rectifier efficiency.

<table>
<thead>
<tr>
<th>Configuration pins</th>
<th>Storage element threshold voltages</th>
<th>LDOs output voltages</th>
<th>Typical use</th>
</tr>
</thead>
<tbody>
<tr>
<td>H H H</td>
<td>4.12 V</td>
<td>3.67 V</td>
<td>3.60 V</td>
</tr>
<tr>
<td>H H L</td>
<td>4.12 V</td>
<td>4.04 V</td>
<td>3.60 V</td>
</tr>
<tr>
<td>H L H</td>
<td>4.12 V</td>
<td>3.67 V</td>
<td>3.01 V</td>
</tr>
<tr>
<td>H L L</td>
<td>2.70 V</td>
<td>2.30 V</td>
<td>2.20 V</td>
</tr>
<tr>
<td>L H H</td>
<td>4.50 V</td>
<td>3.67 V</td>
<td>2.80 V</td>
</tr>
<tr>
<td>L H L</td>
<td>4.50 V</td>
<td>3.92 V</td>
<td>3.60 V</td>
</tr>
<tr>
<td>L L H</td>
<td>3.63 V</td>
<td>3.10 V</td>
<td>2.80 V</td>
</tr>
<tr>
<td>L L L</td>
<td>Custom mode - see Section 2.3.1</td>
<td></td>
<td>1.8 V</td>
</tr>
</tbody>
</table>

Table 2: Usage of CFG[2:0]

<table>
<thead>
<tr>
<th>ENLV</th>
<th>ENHV</th>
<th>LV output</th>
<th>HV output</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>H</td>
<td>Enabled</td>
<td>Enabled</td>
</tr>
<tr>
<td>H</td>
<td>L</td>
<td>Enabled</td>
<td>Disabled</td>
</tr>
<tr>
<td>L</td>
<td>H</td>
<td>Disabled</td>
<td>Enabled</td>
</tr>
<tr>
<td>L</td>
<td>L</td>
<td>Disabled</td>
<td>Disabled</td>
</tr>
</tbody>
</table>

Table 3: LDOs enabling

<table>
<thead>
<tr>
<th>SELMPP[1]</th>
<th>SELMPP[0]</th>
<th>Vmpp/Voc</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>50%</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>65%</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>80%</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>ZMPP</td>
</tr>
</tbody>
</table>

Table 4: Usage of SELMPP[1:0]
2.3 Advanced configurations

A complete description of the system constraints and configurations is available in Section 8 “System configuration” of the AEM30940 datasheet.

A reminder on how to compute the configuration resistors value is provided below. Calculation can be made with the help of the spreadsheet found at the e-peas website.

2.3.1 Custom mode

In addition to the pre-defined protection levels, the custom mode allows users to define their own levels via resistors R1 to R4 and to tune the output of the high voltage LDO via resistors R5-R6.

By defining $RT = R1 + R2 + R3 + R4$ ($1\,\text{M} \Omega \leq RT \leq 100\,\text{M} \Omega$):

- $R1 = RT \left(1\,\text{V} / V_{\text{VCH}}\right)$
- $R2 = RT \left(1\,\text{V} / V_{\text{CHRDY}} - 1\,\text{V} / V_{\text{VCH}}\right)$
- $R3 = RT \left(1\,\text{V} / V_{\text{VODIS}} - 1\,\text{V} / V_{\text{CHRDY}}\right)$
- $R4 = RT \left(1 - 1\,\text{V} / V_{\text{VODIS}}\right)$

By defining $RV = R5 + R6$ ($1\,\text{M} \Omega \leq RV \leq 40\,\text{M} \Omega$):

- $R5 = RV \left(1\,\text{V} / V_{\text{VHV}}\right)$
- $R6 = RV \left(1 - 1\,\text{V} / V_{\text{VHV}}\right)$

Make sure the protection levels satisfy the following conditions:
- $V_{\text{CHRDY}} + 0.05\,\text{V} \leq V_{\text{VCH}} \leq 4.5\,\text{V}$
- $V_{\text{VODIS}} + 0.05\,\text{V} \leq V_{\text{CHRDY}} \leq V_{\text{VCH}} - 0.05\,\text{V}$
- $2.2\,\text{V} \leq V_{\text{VODIS}}$
- $V_{\text{VHV}} \leq V_{\text{VODIS}} - 0.3\,\text{V}$

If unused, leave the resistor footprints (R1 to R6) empty.

2.3.2 ZMPP configuration

If this configuration is chosen (see Table 4), the AEM30940 regulate V_{VSR} at a voltage equals to the product of $R1$ times the current available at the output of the internal rectifier.

- $10\,\Omega \leq R_{ZMPP} \leq 1\,\text{M} \Omega$

If unused, leave the resistor footprint R1 empty.

2.3.3 Primary battery configuration

As to the main storage element, the primary battery protection levels have to be defined. To do so, use resistors R7-R8.

By defining $RP = R7 + R8$ ($100\,\text{k} \Omega \leq RP \leq 500\,\text{k} \Omega$):

- $R7 = \frac{V_{\text{VPRIM}} - \text{min}}{4} \cdot RP - \frac{1}{2.2\,\text{V}}$
- $R8 = RP - R7$

If unused, use a jumper to short each ”NoPRIM” 2-pins headers.

2.3.4 Balun circuit configuration

When using a dual-cell supercapacitor (that does not already include a balancing circuit), enable the balun circuit configuration to ensure equal voltage on both cells. To do so:

- Connect the node between the two supercapacitor cells to BAL (on BATT connector)
- Use a jumper to connect ”BAL” to ”ToCN”

If unused, use a jumper to connect ”BAL” to ”GND”.
How to reset the AEM30940 evaluation board:
To reset the board, simply disconnect the storage device and the optional primary battery and connect the 6”Reset” connections (working from the rightmost to the left) to a GND node (i.e. the negative pin of any connector) in order to discharge the internal nodes of the system.

3 Functional Tests
This section presents a few simple tests that allow the user to understand the functional behavior of the AEM30940. To avoid damaging the board, follow the procedure found in Section 2.1 “Safety information”. If a test has to be restarted, make sure to properly reset the system to obtain reproducible results.

The following functional tests were made using the following setup:
- Configuration: CFG[2:0] = HLL, BAND 1 connected, ENLV = H, ENHV = H
- Storage element: capacitor (4.7mF + CBATT)
- Load: 10kΩ on HVOUT, LVOUT floating
- SRC: current source (1mA or 100μA) with voltage compliance (4V)

Feel free to adapt the setup to match your system as long as you respect the input and cold-start constraints (see Section 1 “Introduction” of AEM30940 datasheet).

3.1 Start-up
The following example allows users to observe the behavior of the AEM30940 in the wake-up mode.

Setup
1. Place the probes on the nodes to be observed.
2. Referring to Figure 1, follow steps 1 to 5 explained in Section 2.1.

Observations and measurements
- BATT: Voltage rises as the power provided by the source is transferred to the storage element (see Figure 2).
- HLDO/LLDO: Regulated when voltage on BATT first rises above Vchrdy (see Figure 2).
- STATUS[0]: Asserted when the LDOs are ready to be enabled (refer to Section 7.2 “Normal mode” of the AEM30940 datasheet) (see Figure 2).

- STATUS[2]: Asserted each time the AEM30940 performs a MPP evaluation (see Figure 3).

Figure 2: STATUS[0] and HLDO evolution with BATT

3.2 Shutdown
This test allows users to observe the behavior of the AEM30940 when the system is running out of energy.
Setup
1. Place the probes on the nodes to be observed.
2. Referring to Figure 1, follow steps 1 to 5 explained in Section 2.1. Configure the board in the desired state and start the system (see Section 3.1). Do not use a primary battery.
3. Let the system reach a steady state (i.e., voltage on BATT between Vchrdy and Vovch and STATUS[0] asserted).
4. Remove your source element and let the system discharge through quiescent current and HVOUT/LVOUT load(s).

Observations and measurements
- **BATT**: Voltage decreases as the system consumes the power accumulated in the storage element. The voltage remains stable after crossing Vovdis (see Figure 4).
- **STATUS[0]**: De-asserted when the LDOs are no longer available as the storage element is running out of energy. This happens 600 ms after STATUS[1] assertion (see Figure 4).
- **STATUS[1]**: Asserted for 600 ms when the storage element voltage (BATT) falls below Vovdis (see Figure 4).

3. Let the system reach a steady state (i.e., voltage on BATT between Vchrdy and Vovch and STATUS[0] asserted).
4. Remove your source element and let the system discharge through quiescent current and HVOUT/LVOUT load(s).

3.3 Switching on primary battery
This example allows users to observe switching from the main storage element to the primary battery when the system is running out of energy.

Setup
1. Place the probes on the nodes to be observed.
2. Referring to Figure 1, follow steps 1 to 5 explained in Section 2.1. Configure the board in the desired state and start the system (see Section 3.1). Connect a primary battery (example: 3.1 V coin cell with protection level at 2.4 V, R7 = 68 kΩ and R8 = 180 kΩ).
3. Let the system reach a steady state (i.e., voltage on BATT between Vchrdy and Vovch and STATUS[0] asserted).
4. Remove your source element and let the system discharge through quiescent current and HVOUT/LVOUT load(s).

Observations and measurements
- **BATT**: Voltage decreases as the system consumes the power accumulated in the storage element. The voltage reaches Vovdis and then rises again to Vchrdy as it is recharged from the primary battery (see Figure 5).
- **STATUS[0]**: Never de-asserted as the LDOs are still functional (see Figure 5).
- **HLDO**: Stable and not affected by switching on the primary battery (see Figure 5).

![Figure 5: Switching from SRC to the primary battery](image)

3.4 Cold start
The following test allows users to observe the minimum voltage required at SRC to coldstart the AEM30940. Be careful to avoid probing any unnecessary node to avoid leakage current induced by the probe. Make sure to properly reset the board to observe the cold-start behavior.

Setup
1. Place the probes on the nodes to be observed.
2. Referring to Figure 1, follow steps 1 and 2 explained in Section 2.1. Configure the board in the desired state. Do not plug any storage element in addition to CBATT.
3. SMA connector: Connect your source element.
Observation and measurements

- **SRC**: Equals to the cold-start voltage during the cold-start phase. Regulated at the selected MPPT percentage of V_{oc} when cold start is over (see Figure 6). Be careful that the cold-start phase time will shorten with the input power. Limit it to ease the observation.

- **BATT**: Starts to charge when the cold-start phase is over (see Figure 6).

![Figure 6: AEM30940 behaviour during cold start](image)

3.5 Dual-cell supercapacitor balancing circuit

This test allows users to observe the balancing circuit behavior that maintains the voltage on BAL equilibrated.

Setup

1. Following steps 1 and 2 explained in Section 2.1 and referring to Figure 1, configure the board in the desired state. Plug the jumper linking “BAL” to “ToCN”.

2. **BATT**: Plug capacitor C1 between the positive (+) pin and the BAL pin, and a capacitor C2 between the BAL pin and the negative (-) pin.

 Select $C_1 \neq C_2$ such that:

 - $C_1 & C_2 > 1 \text{ mF}$
 - $\frac{C_2 \cdot V_{chrdy}}{C_1} \geq 0.9 \text{ V}$

3. **SMA connector**: Plug your source element to power up the system.

Measurements

- **BAL**: Equal to half the voltage on **BATT**.